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a b s t r a c t

The aim of this paper is to classify order-preserving functions according to their arity gap.
Noteworthy examples of order-preserving functions are the so-called aggregation func-
tions.We first explicitly classify the Lovász extensions of pseudo-Boolean functions accord-
ing to their arity gap. Then we consider the class of order-preserving functions between
partially ordered sets, and establish a similar explicit classification for this function class.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the arity gap of functions of several variables. Essentially, the arity gap of a function f : An
→ B

(n ≥ 2) that depends on all of its variables can be defined as the minimum decrease in the number of essential variables
when variables of f are identified. Salomaa [18] showed that the arity gap of any Boolean function is at most 2. This result
was extended to functions defined on arbitrary finite domains by Willard [21], who showed that the same upper bound
holds for the arity gap of any function f : An

→ B, provided that n > max(|A|, 3). In fact, he showed that if the arity gap of
such a function f equals 2, then f is totally symmetric. This line of research culminated into a complete classification of
functions f : An

→ B according to their arity gap (see Theorem 2.5), originally presented in [4] in the setting of functions
with finite domains; in [6] it was observed that this result holds for functions with arbitrary, possibly infinite domains.

Salomaa’s [18] result on the upper bound for the arity gap of Boolean functions mentioned above was strengthened
in [3], where Boolean functions were completely classified according to their arity gap. Using tools provided by Berman
and Kisielewicz [1] andWillard [21], in [4] a similar explicit classification was established for all pseudo-Boolean functions,
i.e., functions f : {0, 1}n → R. As it turns out, this leads to analogous classifications of wider classes of functions. In [5], this
result on pseudo-Boolean functions was the key step in showing that among lattice polynomial functions only truncated
ternary medians have arity gap 2; all the others have arity gap 1.

Similar techniques are used in Section 3 to derive explicit descriptions of the arity gap of well-known extensions of
pseudo-Boolean functions to the whole real line, namely, Owen and Lovász extensions.

In Section 4, we consider the arity gap of order-preserving functions. To this extent, we present a complete classifi-
cation of functions over arbitrary domains according to their arity gap (originally established in [4] for functions over
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finite domains), which is then used to derive a dichotomy theorem based on the arity gap (and the so-called quasi-
arity), and to explicitly determine those order-preserving functions that have arity gap 1 and those that have arity
gap 2.

Aggregation functions became a widely studied class of order-preserving functions. Thus, as a by-product of our general
results, we obtain an explicit classification of these functions according to their arity gap, which we present in the end of
Section 4.

2. Preliminaries: arity gap and the simple minor relation

Throughout this paper, let A and B be arbitrary sets with at least two elements. A B-valued function (of several variables) on
A is a mapping f : An

→ B for some positive integer n, called the arity of f . The A-valued functions on A are called operations
on A. Operations on {0, 1} are called Boolean functions. We denote the set of real numbers by R. Functions f : {0, 1}n → R
are referred to as pseudo-Boolean functions. For a natural number n ≥ 1, we denote [n] = {1, . . . , n}.

The i-th variable is said to be essential in f : An
→ B, or f is said to depend on xi, if there is a pair

((a1, . . . , ai−1, ai, ai+1, . . . , an), (a1, . . . , ai−1, bi, ai+1, . . . , an)) ∈ An
× An,

called a witness of essentiality of xi in f , such that

f (a1, . . . , ai−1, ai, ai+1, . . . , an) ≠ f (a1, . . . , ai−1, bi, ai+1, . . . , an).

The number of essential variables in f is called the essential arity of f , and it is denoted by ess f . If ess f = m, we say that f
is essentially m-ary.

For n ≥ 2, define

An
=
:= {(a1, . . . , an) ∈ An

: ai = aj for some i ≠ j}.

We also define A1
=
:= A. Note that if A has less than n elements, then An

=
= An.

Consider f : An
→ B. Any function g: An

→ B satisfying f |An= = g|An= is called a support of f . The quasi-arity of f , denoted
qa f , is defined as the minimum of the essential arities of the supports of f , i.e., qa f := ming ess g , where g ranges over the
set of all supports of f . If qa f = m, we say that f is quasi-m-ary.

A function f : An
→ B is said to be obtained from g: Am

→ B by simple variable substitution, or f is a simple minor of g , if
there is a mapping σ : {1, . . . ,m} → {1, . . . , n} such that

f (x1, . . . , xn) = g(xσ(1), . . . , xσ(m)) for all (x1, . . . , xn) ∈ An.

The simple minor relation constitutes a quasi-order≤ on the set of all B-valued functions of several variables on Awhich is
given by the following rule: f ≤ g if and only if f is obtained from g by simple variable substitution. If f ≤ g and g ≤ f , we
say that f and g are equivalent, denoted f ≡ g . If f ≤ g but g ≰ f , we denote f < g . It can be easily observed that if f ≤ g
then ess f ≤ ess g , with equality if and only if f ≡ g . For background, extensions and variants of the simple minor relation,
see, e.g., [2,7–9,12,13,17,20,22].

For f : An
→ B, i, j ∈ {1, . . . , n}, i ≠ j, we define fi←j: An

→ B to be the simple minor of f given by the substitution of xj
for xi, that is,

fi←j(x1, . . . , xn) = f (x1, . . . , xi−1, xj, xi+1, . . . , xn).

Note that on the right-hand side of the above equality, xj occurs twice, namely both at the i-th and the j-th positions. We
denote

ess<f = max
g<f

ess g,

and we define the arity gap of f by gap f := ess f − ess<f . It is easily observed that

gap f = min
i≠j

(ess f − ess fi←j),

where i and j range over the set of indices of essential variables of f .
In the sequel, whenever we consider the arity gap of some function f , we will assume that all variables of f are essential.

This is not a significant restriction, because every nonconstant function is equivalent to a function with no inessential
variables and equivalent functions have the same arity gap.

Salomaa [18] proved that the arity gap of every Boolean function with at least two essential variables is at most 2. This
result was generalized by Willard [21, Lemma 1.2] in the following theorem.

Theorem 2.1. Let A be a finite set. Suppose f : An
→ B depends on all of its variables. If n > max(|A|, 3), then gap f ≤ 2.

In [3], Salomaa’s result was strengthened into the following explicit classification of Boolean functions in terms of arity
gap.
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Theorem 2.2. Assume that f : {0, 1}n → {0, 1} depends on all of its variables. We have gap f = 2 if and only if f is equivalent
to one of the following Boolean functions:
• x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ c,
• x1x2 ⊕ x1 ⊕ c,
• x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ c,
• x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ x2 ⊕ c,
where⊕ denotes addition modulo 2 and c ∈ {0, 1}. Otherwise gap f = 1.

Based on this, the following complete classification of pseudo-Boolean functions according to their arity gap was
presented in [4].

Theorem 2.3. For a pseudo-Boolean function f : {0, 1}n → R which depends on all of its variables, gap f = 2 if and only if f
satisfies one of the following conditions:
• n = 2 and f is a nonconstant function satisfying f (0, 0) = f (1, 1),
• f = g ◦ h, where g: {0, 1} → R is injective and h: {0, 1}n → {0, 1} is a Boolean function with gap h = 2, as listed in

Theorem 2.2.
Otherwise gap f = 1.

Remark 2.4. It is noteworthy that there is a complete one-to-one correspondence between pseudo-Boolean functions and
set functions, i.e., functions v: 2[n] → R for some n ≥ 1. This correspondence is based on the natural order-isomorphism
between {0, 1}n and the power set 2[n] of [n]. For a pseudo-Boolean function f : {0, 1}n → R we can associate a set function
vf : 2[n] → R given by vf (T ) = f (eT ), where eT denotes the characteristic vector of T ⊆ [n]. Conversely, for a set function
v: 2[n] → R, let fv: {0, 1}n → R be the pseudo-Boolean function defined by fv(eT ) = v(T ). Clearly, fvf = f and vfv = v for
every pseudo-Boolean function f : {0, 1}n → R and every set function v: 2[n] → R.

The study of the arity gap of functions An
→ B culminated into the characterization presented in Theorem 2.5, originally

proved in [4]. We need to introduce some terminology to state the result.
Let 2A be the power set of A, and define oddsupp:


n≥1 A

n
→ 2A by

oddsupp(a1, . . . , an) =

ai : |{j ∈ [n] : aj = ai}| is odd


.

A partial function f : S → B, S ⊆ An, is said to be determined by oddsupp if f = f ∗ ◦ oddsupp|S for some function f ∗: 2A
→ B.

Theorem 2.5. Suppose that f : An
→ B, n ≥ 2, depends on all of its variables.

(i) For 3 ≤ p ≤ n, gap f = p if and only if qa f = n− p.
(ii) For n ≠ 3, gap f = 2 if and only if qa f = n− 2 or qa f = n and f |An= is determined by oddsupp.
(iii) For n = 3, gap f = 2 if and only if there is a nonconstant unary function h: A→ B and i1, i2, i3 ∈ {0, 1} such that

f (x1, x0, x0) = h(xi1),
f (x0, x1, x0) = h(xi2),
f (x0, x0, x1) = h(xi3).

(iv) Otherwise gap f = 1.

Remark 2.6. The notion of a function’s being determined by oddsupp is due to Berman and Kisielewicz [1]. Willard [21]
showed that if f : An

→ Bwhere A is finite, n > max(|A|, 3) and gap f = 2, then f is determined by oddsupp.

Remark 2.7. While Theorem 2.5 was originally stated and proved in the setting of functions with finite domains, its proof
presented in [4] does not make use of any assumption on the cardinalities of the domain and codomain—as long as they
contain at least two elements. Hence the theorem immediately generalizes for functions with arbitrary domains.

3. The arity gap of Lovász and Owen extensions

In this section,we considerwell-known extensions of pseudo-Boolean functions and generalize Theorem2.3 accordingly.
For further background on pseudo-Boolean functions, we refer the reader to Hammer and Rudeanu [11].

As is well known, every pseudo-Boolean function can be uniquely represented by a multilinear polynomial expression.
A common way to construct such representations makes use of the notion of ‘‘Möbius transform’’.

Let v: 2[n] → R be a set function. TheMöbius transform (orMöbius inverse) of v is the mapmv: 2[n] → R given by

mv(S) =

T⊆S

(−1)|S|−|T |v(T ), for all S ⊆ [n].

In view of Remark 2.4, we say thatm: 2[n] → R is the Möbius transform of f : {0, 1}n → R ifm = mvf .
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Theorem 3.1 ([11]). Let f : {0, 1}n → R be a pseudo-Boolean function. Then

f (x) =

S⊆[n]

mvf (S)

i∈S

xi, for all x ∈ {0, 1}n. (1)

Remark 3.2. Theorem 3.1 motivates the terminology ‘‘Möbius inverse of v’’ since it implies in particular that for every
S ⊆ [n], v(S) =


T⊆S mv(T ).

The following result is well known and easy to verify (see, e.g., [15] for the case of order-preserving pseudo-Boolean
functions).

Lemma 3.3. Let f : {0, 1}n → R be a pseudo-Boolean function and consider its corresponding set function vf . If xi is inessential
in f , then mvf (S) = 0 whenever i ∈ S. In particular, f depends on xi if and only if xi appears in the multilinear polynomial
representation (1) of f .

There are several ways of extending a pseudo-Boolean function f : {0, 1}n → R to a function on R. Perhaps the most
natural is the multilinear polynomial extension. The Owen extension [16] (or multilinear extension) of a pseudo-Boolean
function f : {0, 1}n → R is the mapping Pf :Rn

→ R defined by

Pf (x) =

S⊆[n]

mvf (S)

i∈S

xi, for all x ∈ Rn.

Clearly, f coincides with the restriction of Pf to {0, 1}n.
Another extension of pseudo-Boolean functions to functions on R is the so-called ‘‘Lovász extension’’. This terminology is

due to Singer [19]who refined a result by Lovász [14] concerning convex functions. The Lovász extension of a pseudo-Boolean
function f : {0, 1}n → R is the mapping Ff :Rn

→ R defined by

Ff (x) =

S⊆[n]

mvf (S)

i∈S

xi, for all x ∈ Rn.

Observe that the Lovász extension of a pseudo-Boolean function f is the unique extension of f which is linear on the
‘‘standard simplices’’

Rn
σ = {x ∈ Rn

: xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n)},

for any permutation σ on [n] (see [10]).

Remark 3.4. The defining expressions of Owen and Lovász extensions differ only in the fact that the connecting operations
between variables are the product and the minimum, respectively. In the sequel, this observation can be used to translate
the results concerning Lovász extensions into analogous results about Owen extensions.

Remark 3.5. Every function F :Rn
→ R of the form

F(x) =

S⊆[n]

m(S)

i∈S

xi, (2)

where m: 2[n] → R is the Lovász extension of a unique pseudo-Boolean function, namely, f = F |{0,1}n . Therefore, we shall
refer to any map of the form (2) as a Lovász extension.

Theorem 3.6. Let f : {0, 1}n → R be a pseudo-Boolean function. Then the i-th variable is essential in f if and only if the i-th
variable is essential in Ff .

Proof. As observed, f coincides with Ff on {0, 1}n, and thus if the i-th variable is inessential in Ff , then the i-th variable is
inessential in f .

Conversely, if the i-th variable is inessential in f , then by Lemma 3.3 it follows that xi does not appear in the defining
expression of Ff . Hence, the i-th variable is inessential in Ff . �

Corollary 3.7. Let f : {0, 1}n → R be a pseudo-Boolean function. Then gap f = gap Ff . In particular, gap Ff ≤ 2.

Using Theorems 2.2 and 2.3, we obtain the following explicit descriptions of those Lovász extensions that have arity
gap 2.

Theorem 3.8. Assume that F :Rn
→ R is a Lovász extension that depends on all of its variables. Then gap F = 2 if and only if F

is of one of the following forms:

(i) F ≡ a−b
2


S⊆[n]


(−2)|S| ·


i∈S xi


,
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(ii) F ≡ a+ (b− a)x1 + (a− b)(x1 ∧ x2),
(iii) F ≡ a+ (b− a)


(x1 ∧ x2)+ (x1 ∧ x3)+ (x2 ∧ x3)


+ 2(a− b)(x1 ∧ x2 ∧ x3),

(iv) F ≡ a+ (b− a)(x1 + x2)+ (a− b)

(x1 ∧ x2)+ (x1 ∧ x3)+ (x2 ∧ x3)


+ 2(b− a)(x1 ∧ x2 ∧ x3),

(v) F ≡ a+ (b− a)x1 + (c − a)x2 + (2a− b− c)(x1 ∧ x2),

for some a, b, c ∈ R. Otherwise gap F = 1.

Note that since F is assumed to depend on all of its variables, for functions of the form (i)–(iv) it holds that a ≠ b, and for
functions of the form (v) it holds that {a, b, c} ≠ {a}.

Proof. Let f : {0, 1}n → R be the pseudo-Boolean function determined by F . By Theorems 2.2 and 2.3, gap f = 2 if and only
if

(i) f ≡ (b− a)(x1 ⊕ · · · ⊕ xn)+ a,
(ii) f ≡ (b− a)(x1x2 ⊕ x1)+ a,
(iii) f ≡ (b− a)(x1x2 ⊕ x1x3 ⊕ x2x3)+ a,
(iv) f ≡ (b− a)(x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1 ⊕ x2)+ a, or
(v) f : {0, 1}2 → R is nonconstant such that f (0, 0) = f (1, 1), say, f (0, 0) = f (1, 1) = a, f (1, 0) = b and f (0, 1) = c ,

where ⊕ denotes addition modulo 2, and a, b, c ∈ R. The theorem now follows by computing the Möbius transform of vf
in each possible case. �

Corollary 3.9. A nondecreasing Lovász extension F :Rn
→ R has arity gap 2 if and only if

F ≡ a+ (b− a) ((x1 ∧ x2)+ (x1 ∧ x3)+ (x2 ∧ x3))+ 2(a− b) (x1 ∧ x2 ∧ x3) . (3)

Otherwise gap F = 1.

Techniques similar to those developed in this section were successfully used in [5] to classify the class of lattice
polynomial functions, i.e., functions which can be obtained as compositions of the lattice operations and variables
(projections) and constants. A well-known example of a lattice polynomial function on a distributive lattice A is themedian
functionmed: A3

→ A given by

med(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) .

As shown in [5], lattice polynomial functions with arity gap 2 are exactly the truncated median functions.

Theorem 3.10 ([5]). Let f : An
→ A be a lattice polynomial function on a bounded distributive lattice A. Then gap f = 2 if and

only if

f ≡ (a ∨med(x1, x2, x3)) ∧ b,

for some a, b ∈ A, a < b. Otherwise gap f = 1.

In the next section,we extend these results to themore general class of order-preservingmaps betweenpossibly different
ordered sets A and B.

4. The arity gap of order-preserving functions

Let (A; ≤) be a partially ordered set. We say that (A; ≤) is

• upwards directed if every pair of elements of A has an upper bound,
• downwards directed if every pair of elements of A has a lower bound,
• bidirected if (A; ≤) is both upwards directed and downwards directed,
• pseudo-directed if every pair of elements of A has an upper bound or a lower bound.

Remark 4.1. In the above definitions, existence of a least upper bound or a greatest lower bound is not stipulated. Therefore,
an upwards (or downwards) directed poset is not the same thing as a semilattice, nor is a bidirected poset the same thing as
a lattice. However, every semilattice is either upwards or downwards directed, and every lattice and every bounded poset
is bidirected. Moreover, every upwards directed or downwards directed poset is pseudo-directed.

Let (A; ≤A) and (B; ≤B) be partially ordered sets. A function f : An
→ B is said to be order-preserving (with respect to

the partial orders ≤A and ≤B) if for all a, b ∈ An, f (a)≤B f (b) whenever a≤A b, where a≤A b denotes the componentwise
ordering of tuples, i.e., a≤A b if and only if ai≤A bi for all i ∈ {1, . . . , n}.
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Lemma 4.2. Let (A; ≤A) be a pseudo-directed poset, and let f : An
→ B be a function. If xi is essential in f then there are elements

a1, . . . , an, bi ∈ A such that ai <A bi and

f (a1, . . . , ai−1, ai, ai+1, . . . , an) ≠ f (a1, . . . , ai−1, bi, ai+1, . . . , an).

Moreover, if B is partially ordered by≤B and f is order-preserving with respect to≤A and≤B, then

f (a1, . . . , ai−1, ai, ai+1, . . . , an) <B f (a1, . . . , ai−1, bi, ai+1, . . . , an).

Proof. Since xi is essential in f , there exist elements a1, . . . , ai−1, a′, b′, ai+1, · · · , an ∈ A such that

f (a1, . . . , ai−1, a′, ai+1, . . . , an) ≠ f (a1, . . . , ai−1, b′, ai+1, . . . , an).

By the assumption that (A; ≤) is pseudo-directed, a′ and b′ have an upper bound or a lower bound. Assume first that a′ and
b′ have an upper bound c. We clearly have that

f (a1, . . . , ai−1, a′, ai+1, . . . , an) ≠ f (a1, . . . , ai−1, c, ai+1, . . . , an) or (4)

f (a1, . . . , ai−1, b′, ai+1, . . . , an) ≠ f (a1, . . . , ai−1, c, ai+1, . . . , an). (5)

The claim thus follows by choosing bi := c and ai := a′ if (4) holds or ai := b′ if (5) holds.
Otherwise a′ and b′ have a lower bound, and a similar argument shows that the claim holds also in this case.
If f is order-preserving with respect to≤A and≤B, then we have in fact that

f (a1, . . . , ai−1, ai, ai+1, . . . , an) <B f (a1, . . . , ai−1, bi, ai+1, . . . , an). �

Lemma 4.3. Let (A; ≤A) be a bidirected poset, let (B; ≤B) be any poset, and let f : An
→ B (n ≥ 2) be an order-preserving

function that depends on all of its variables. Then, for all i, j ∈ {1, . . . , n} (i ≠ j), xj is essential in fi←j. Furthermore, if i < j, then
there exist elements c, d, a1, . . . , an ∈ A such that c <A d and

f (a1, . . . , ai−1, c, ai+1, . . . , aj−1, c, aj+1, . . . , an) <B f (a1, . . . , ai−1, d, ai+1, . . . , aj−1, d, aj+1, . . . , an). (6)

Proof. Assume, without loss of generality, that i = 1, j = 2. Since x1 is essential in f , by Lemma 4.2 there exist elements
a1, . . . , an, b1 ∈ A such that a1 <A b1 and f (a1, a2, . . . , an) <B f (b1, a2, . . . , an). By the assumption that (A; ≤) is bidirected,
there exist a lower bound c of a1 and a2 and an upper bound d of b1 and a2. Again, by the monotonicity of f ,

f1←2(a1, c, a3, . . . , an) = f (c, c, a3, . . . , an) ≤B f (a1, a2, a3, . . . , an) <B f (b1, a2, a3, . . . , an)
≤B f (d, d, a3, . . . , an) = f1←2(a1, d, a3, . . . , an),

which shows that x2 is essential in f1←2 and inequality (6) holds. �

Proposition 4.4. Let (A; ≤A) be a bidirected poset, let (B; ≤B) be any poset, and let f : An
→ B (n ≥ 2) be an order-preserving

function that depends on all of its variables. Then qa f ≥ n− 1 and f |An= is not determined by oddsup.

Proof. Suppose first, on the contrary, that qa f = n − p for some p ≥ 2. Let g be a support of f with essential arity n − p.
Then g has at least two inessential variables, say xi and xj, and these variables are clearly inessential in gi←j as well. But, since
fi←j = gi←j, this constitutes a contradiction to Lemma 4.3 which asserts that xj is essential in fi←j.

Suppose then, on the contrary, that f |An= is determined by oddsupp. Then f |An= = f ∗ ◦ oddsupp for some f ∗: 2A
→ B.

We clearly have that for all c, d, a3, . . . , an ∈ A, oddsupp(c, c, a3, . . . , an) = oddsupp(d, d, a3, . . . , an) (note that
(c, c, a3, . . . , an), (d, d, a3, . . . , an) ∈ An

=
); hence f (c, c, a3, . . . , an) = f (d, d, a3, . . . , an). This contradicts Lemma 4.3. �

Proposition 4.5. Let (A; ≤A) be a bidirected poset, let (B; ≤B) be any poset, and let f : A3
→ B be an order-preserving function

that depends on all of its variables. Then gap f = 2 if and only if there is a nonconstant order-preserving unary function h: A→ B
such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

Proof. By Theorem 2.5, the condition is sufficient. For necessity, assume that gap f = 2. Then, by Theorem 2.5, there is a
nonconstant unary function h: A→ B and i1, i2, i3 ∈ {0, 1} such that

f (x1, x0, x0) = h(xi1), f (x0, x1, x0) = h(xi2), f (x0, x0, x1) = h(xi3).

We claim that i1 = i2 = i3 = 0. Suppose, on the contrary, that i1 = 1. By Lemma 4.3, there exist elements a, b, c ∈ A such
that b<A c and f (a, b, b) <B f (a, c, c), but this is a contradiction to f (a, b, b) = h(a) = f (a, c, c). Similarly, we can derive a
contradiction from the assumption that i2 = 1 or i3 = 1.

The monotonicity of h follows from the monotonicity of f . For, if a≤A b, then

h(a) = f (a, a, a)≤B f (b, b, b) = h(b). �
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Theorem 4.6. Let (A; ≤A) be a bidirected poset, let (B; ≤B) be any poset, and let f : An
→ B (n ≥ 2) be an order-preserving

function that depends on all of its variables. Then gap f = 2 if and only if n = 3 and there is a nonconstant order-preserving
unary function h: A→ B such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

Otherwise gap f = 1.

Proof. Immediate consequence of Theorem 2.5 and Propositions 4.4 and 4.5. �

By imposing stronger assumptions on the underlying posets, we obtain more stringent descriptions of order-preserving
functions with arity gap 2.

Lemma 4.7. Let (A; ≤A) and (B; ≤B) be lattices, and let h: A → B be a lattice homomorphism. Let f : A3
→ B be an order-

preserving function such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

If the homomorphic image of (A; ≤A) by h is a distributive sublattice of (B; ≤B), then f = med

h(x1), h(x2), h(x3)


, where

med denotes the ternary median function on Im h.

Proof. By the monotonicity of f and the assumption that A is a lattice, we have that for all a1, a2, a3 ∈ A,

h (a1 ∧ a2) = f (a1 ∧ a2, a1 ∧ a2, a3) ≤ f (a1, a2, a3) ≤ f (a1 ∨ a2, a1 ∨ a2, a3) = h (a1 ∨ a2) .

A similar argument shows that for all i, j ∈ {1, 2, 3}, we have

h

ai ∧ aj


≤ f (a1, a2, a3) ≤ h


ai ∨ aj


.

By the assumption that B is a lattice, it follows from the above inequalities that

h (a1 ∧ a2) ∨ h (a2 ∧ a3) ∨ h (a1 ∧ a3) ≤ f (a1, a2, a3) ≤ h (a1 ∨ a2) ∧ h (a2 ∨ a3) ∧ h (a1 ∨ a3) .

Since h is a lattice homomorphism, we have that

h (a1 ∧ a2) ∨ h (a2 ∧ a3) ∨ h (a1 ∧ a3) = (h(a1) ∧ h(a2)) ∨ (h(a2) ∧ h(a3)) ∨ (h(a1) ∧ h(a3)) , (7)

h (a1 ∨ a2) ∧ h (a2 ∨ a3) ∧ h (a1 ∨ a3) = (h(a1) ∨ h(a2)) ∧ (h(a2) ∨ h(a3)) ∧ (h(a1) ∨ h(a3)) . (8)

By the assumption that Im h is a distributive sublattice of B, the right-hand sides of (7) and (8) are equal, and they are actually
equal to med


h(a1), h(a2), h(a3)


. We conclude that f (a1, a2, a3) = med


h(a1), h(a2), h(a3)


. �

Corollary 4.8. Let (A; ≤A) be a chain and let (B; ≤B) be any lattice. Let f : An
→ B be an order-preserving function. Then

gap f = 2 if and only if n = 3 and f = med

h(x1), h(x2), h(x3)


for some nonconstant order-preserving unary function

h: A→ B (heremed denotes the median function on Im h). Otherwise gap f = 1.

Proof. If f = med

h(x1), h(x2), h(x3)


, where h is as described in the statement, then clearly gap f = 2. For the converse

implication, assume that gap f = 2. By Theorem 4.6, n = 3 and there is a nonconstant order-preserving unary function
h: A→ B such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

Since every order-preserving function h is a lattice homomorphism from a chain A to any lattice B and the homomorphic
image ofAbyh is a chain andhence adistributive sublattice ofB, it follows fromLemma4.7 that f = med(h(x1), h(x2), h(x3)).

The last claim follows from Theorem 4.6, which asserts that gap f ≤ 2. �

To illustrate the use of the results obtained in this section, we present an alternative proof of Theorem 3.10.

Proof of Theorem 3.10. It is well known that lattice polynomial functions are order-preserving. Therefore Theorem 4.6
applies, and gap f ≤ 2. Assume, without loss of generality, that ess f = n. Suppose that gap f = 2. Then, by Theorem 4.6,
n = 3 and there is a nonconstant order-preserving unary function h: A→ A such that

f (x1, x0, x0) = f (x0, x1, x0) = f (x0, x0, x1) = h(x0).

Since f is a polynomial function, h is a polynomial function as well, and hence h(x) = (a∨ x)∧ b for some a, b ∈ A, a < b. In
particular, h is a lattice homomorphism. Since A is a distributive lattice, Im h is a distributive sublattice of A, and Lemma 4.7
then implies that

f = med

h(x1), h(x2), h(x3)


= h


med(x1, x2, x3)


.

Clearly, if f has the above form, then gap f = 2. Since gap f ≤ 2, the last claim of the theorem follows. �
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As mentioned, the class of order-preserving functions includes the noteworthy class of aggregation functions.
Traditionally, an aggregation function on a closed real interval [a, b] ⊆ R is defined as a mapping M: [a, b]n → [a, b]which
is nondecreasing and fulfills the boundary conditions M(a, . . . , a) = a and M(b, . . . , b) = b. From Corollary 4.8, we obtain
the following.

Corollary 4.9. Let M: [a, b]n → [a, b] be an aggregation function on a real interval [a, b]. Then gapM = 2 if and only if n = 3
and

M = med

h(x1), h(x2), h(x3)


for some nonconstant order-preserving unary function h: [a, b] → [a, b] satisfying h(a) = a, h(b) = b. Otherwise gap f = 1.
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