60,588 research outputs found

    Network Psychometrics

    Full text link
    This chapter provides a general introduction of network modeling in psychometrics. The chapter starts with an introduction to the statistical model formulation of pairwise Markov random fields (PMRF), followed by an introduction of the PMRF suitable for binary data: the Ising model. The Ising model is a model used in ferromagnetism to explain phase transitions in a field of particles. Following the description of the Ising model in statistical physics, the chapter continues to show that the Ising model is closely related to models used in psychometrics. The Ising model can be shown to be equivalent to certain kinds of logistic regression models, loglinear models and multi-dimensional item response theory (MIRT) models. The equivalence between the Ising model and the MIRT model puts standard psychometrics in a new light and leads to a strikingly different interpretation of well-known latent variable models. The chapter gives an overview of methods that can be used to estimate the Ising model, and concludes with a discussion on the interpretation of latent variables given the equivalence between the Ising model and MIRT.Comment: In Irwing, P., Hughes, D., and Booth, T. (2018). The Wiley Handbook of Psychometric Testing, 2 Volume Set: A Multidisciplinary Reference on Survey, Scale and Test Development. New York: Wile

    Bayesian Learning of Sum-Product Networks

    Full text link
    Sum-product networks (SPNs) are flexible density estimators and have received significant attention due to their attractive inference properties. While parameter learning in SPNs is well developed, structure learning leaves something to be desired: Even though there is a plethora of SPN structure learners, most of them are somewhat ad-hoc and based on intuition rather than a clear learning principle. In this paper, we introduce a well-principled Bayesian framework for SPN structure learning. First, we decompose the problem into i) laying out a computational graph, and ii) learning the so-called scope function over the graph. The first is rather unproblematic and akin to neural network architecture validation. The second represents the effective structure of the SPN and needs to respect the usual structural constraints in SPN, i.e. completeness and decomposability. While representing and learning the scope function is somewhat involved in general, in this paper, we propose a natural parametrisation for an important and widely used special case of SPNs. These structural parameters are incorporated into a Bayesian model, such that simultaneous structure and parameter learning is cast into monolithic Bayesian posterior inference. In various experiments, our Bayesian SPNs often improve test likelihoods over greedy SPN learners. Further, since the Bayesian framework protects against overfitting, we can evaluate hyper-parameters directly on the Bayesian model score, waiving the need for a separate validation set, which is especially beneficial in low data regimes. Bayesian SPNs can be applied to heterogeneous domains and can easily be extended to nonparametric formulations. Moreover, our Bayesian approach is the first, which consistently and robustly learns SPN structures under missing data.Comment: NeurIPS 2019; See conference page for supplemen

    Visualizing and Understanding Sum-Product Networks

    Full text link
    Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.Comment: Machine Learning Journal paper (First Online), 24 page
    • …
    corecore