2 research outputs found

    On the Kolmogorov complexity of continuous real functions

    Get PDF
    Kolmogorov complexity was originally defined for finitely-representable objects. Later, the definition was extended to real numbers based on the asymptotic behaviour of the sequence of the Kolmogorov complexities of the finitely-representable objects-such as rational numbers-used to approximate them.This idea will be taken further here by extending the definition to continuous functions over real numbers, based on the fact that every continuous real function can be represented as the limit of a sequence of finitely-representable enclosures, such as polynomials with rational coefficients.Based on this definition, we will prove that for any growth rate imaginable, there are real functions whose Kolmogorov complexities have higher growth rates. In fact, using the concept of prevalence, we will prove that 'almost every' continuous real function has such a high-growth Kolmogorov complexity. An asymptotic bound on the Kolmogorov complexities of total single-valued computable real functions will be presented as well

    Analytical properties of resource-bounded real functionals

    Get PDF
    Computable analysis is an extension of classical discrete computability by enhancing the normal Turing machine model. It investigates mathematical analysis from the computability perspective. Though it is well developed on the computability level, it is still under developed on the complexity perspective, that is, when bounding the available computational resources. Recently Kawamura and Cook developed a framework to define the computational complexity of operators arising in analysis. Our goal is to understand the effects of complexity restrictions on the analytical properties of the operator. We focus on the case of norms over C[0,1] and introduce the notion of dependence of a norm on a point and relate it to the query complexity of the norm. We show that the dependence of almost every point is of the order of the query complexity of the norm. A norm with small complexity depends on a few points but, as compensation, highly depends on them. We briefly show how to obtain similar results for non-deterministic time complexity. We characterize the functionals that are computable using one oracle call only and discuss the uniformity of that characterization. This paper is a significant revision and expansion of an earlier conference version
    corecore