3,012 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Cooperative Simultaneous Localization and Synchronization in Mobile Agent Networks

    Full text link
    Cooperative localization in agent networks based on interagent time-of-flight measurements is closely related to synchronization. To leverage this relation, we propose a Bayesian factor graph framework for cooperative simultaneous localization and synchronization (CoSLAS). This framework is suited to mobile agents and time-varying local clock parameters. Building on the CoSLAS factor graph, we develop a distributed (decentralized) belief propagation algorithm for CoSLAS in the practically important case of an affine clock model and asymmetric time stamping. Our algorithm allows for real-time operation and is suitable for a time-varying network connectivity. To achieve high accuracy at reduced complexity and communication cost, the algorithm combines particle implementations with parametric message representations and takes advantage of a conditional independence property. Simulation results demonstrate the good performance of the proposed algorithm in a challenging scenario with time-varying network connectivity.Comment: 13 pages, 6 figures, 3 tables; manuscript submitted to IEEE Transaction on Signal Processin

    Location-free Spectrum Cartography

    Get PDF
    Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using spatially distributed sensor measurements. Applications of these maps include network planning, interference coordination, power control, localization, and cognitive radios to name a few. Since existing spectrum cartography techniques require accurate estimates of the sensor locations, their performance is drastically impaired by multipath affecting the positioning pilot signals, as occurs in indoor or dense urban scenarios. To overcome such a limitation, this paper introduces a novel paradigm for spectrum cartography, where estimation of spectral maps relies on features of these positioning signals rather than on location estimates. Specific learning algorithms are built upon this approach and offer a markedly improved estimation performance than existing approaches relying on localization, as demonstrated by simulation studies in indoor scenarios.Comment: 14 pages, 12 figures, 1 table. Submitted to IEEE Transactions on Signal Processin

    TW-TOA based positioning in the presence of clock imperfections

    Get PDF
    This manuscript studies the positioning problem based on two-way time-of-arrival (TW-TOA) measurements in semi-asynchronous wireless sensor networks in which the clock of a target node is unsynchronized with the reference time. Since the optimal estimator for this problem involves difficult nonconvex optimization, two suboptimal estimators are proposed based on the squared-range least squares and the least absolute mean of residual errors. We formulated the former approach as an extended general trust region subproblem (EGTR) and propose a simple technique to solve it approximately. The latter approach is formulated as a difference of convex functions programming (DCP), which can be solved using a concave–convex procedure. Simulation results illustrate the high performance of the proposed techniques, especially for the DCP approach
    corecore