329 research outputs found

    Strict Intuitionistic Fuzzy Distance/Similarity Measures Based on Jensen-Shannon Divergence

    Full text link
    Being a pair of dual concepts, the normalized distance and similarity measures are very important tools for decision-making and pattern recognition under intuitionistic fuzzy sets framework. To be more effective for decision-making and pattern recognition applications, a good normalized distance measure should ensure that its dual similarity measure satisfies the axiomatic definition. In this paper, we first construct some examples to illustrate that the dual similarity measures of two nonlinear distance measures introduced in [A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, \emph{IEEE Trans. Syst., Man, Cybern., Syst.}, vol.~51, no.~6, pp. 3980--3992, 2021] and [Intuitionistic fuzzy sets: spherical representation and distances, \emph{Int. J. Intell. Syst.}, vol.~24, no.~4, pp. 399--420, 2009] do not meet the axiomatic definition of intuitionistic fuzzy similarity measure. We show that (1) they cannot effectively distinguish some intuitionistic fuzzy values (IFVs) with obvious size relationship; (2) except for the endpoints, there exist infinitely many pairs of IFVs, where the maximum distance 1 can be achieved under these two distances; leading to counter-intuitive results. To overcome these drawbacks, we introduce the concepts of strict intuitionistic fuzzy distance measure (SIFDisM) and strict intuitionistic fuzzy similarity measure (SIFSimM), and propose an improved intuitionistic fuzzy distance measure based on Jensen-Shannon divergence. We prove that (1) it is a SIFDisM; (2) its dual similarity measure is a SIFSimM; (3) its induced entropy is an intuitionistic fuzzy entropy. Comparative analysis and numerical examples demonstrate that our proposed distance measure is completely superior to the existing ones

    Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding

    Get PDF
    The paper proposes a robust approach to automatic segmentation of leukocyte‟s nucleus from microscopic blood smear images under normal as well as noisy environment by employing a new exponential intuitionistic fuzzy divergence based thresholding technique. The algorithm minimizes the divergence between the actual image and the ideally thresholded image to search for the final threshold. A new divergence formula based on exponential intuitionistic fuzzy entropy has been proposed. Further, to increase its noise handling capacity, a neighborhood-based membership function for the image pixels has been designed. The proposed scheme has been applied on 110 normal and 54 leukemia (chronic myelogenous leukemia) affected blood samples. The nucleus segmentation results have been validated by three expert haematologists. The algorithm achieves an average segmentation accuracy of 98.52% in noise-free environment. It beats the competitor algorithms in terms of several other metrics. The proposed scheme with neighborhood based membership function outperforms the competitor algorithms in terms of segmentation accuracy under noisy environment. It achieves 93.90% and 94.93% accuracies for Speckle and Gaussian noises respectively. The average area under the ROC curves comes out to be 0.9514 in noisy conditions, which proves the robustness of the proposed algorithm

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    A Hypervolume Based Approach to Rank Intuitionistic Fuzzy Sets and Its Extension to Multi-criteria Decision Making Under Uncertainty

    Full text link
    Ranking intuitionistic fuzzy sets with distance based ranking methods requires to calculate the distance between intuitionistic fuzzy set and a reference point which is known to have either maximum (positive ideal solution) or minimum (negative ideal solution) value. These group of approaches assume that as the distance of an intuitionistic fuzzy set to the reference point is decreases, the similarity of intuitionistic fuzzy set with that point increases. This is a misconception because an intuitionistic fuzzy set which has the shortest distance to positive ideal solution does not have to be the furthest from negative ideal solution for all circumstances when the distance function is nonlinear. This paper gives a mathematical proof of why this assumption is not valid for any of the non-linear distance functions and suggests a hypervolume based ranking approach as an alternative to distance based ranking. In addition, the suggested ranking approach is extended as a new multicriteria decision making method, HyperVolume based ASsessment (HVAS). HVAS is applied for multicriteria assessment of Turkey's energy alternatives. Results are compared with three well known distance based multicriteria decision making methods (TOPSIS, VIKOR, and CODAS).Comment: 8 pages, 3 figure
    corecore