1,183 research outputs found

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Functional diversity of motoneurons in the oculomotor system

    Get PDF
    Extraocular muscles contain two types of muscle fibers according to their innervation pattern: singly innervated muscle fibers (SIFs), similar to most skeletal muscle fibers, and multiply innervated muscle fibers (MIFs). Morphological studies have revealed that SIF and MIF motoneurons are segregated anatomically and receive different proportions of certain afferents, suggesting that while SIF motoneurons would participate in the whole repertoire of eye movements, MIF motoneurons would contribute only to slow eye movements and fixations. We have tested that proposal by performing single-unit recordings, in alert behaving cats, of electrophysiologically identified MIF and SIF motoneurons in the abducens nucleus. Our results show that both types of motoneuron discharge in relation to eye position and velocity, displaying a tonic–phasic firing pattern for different types of eye movement (saccades, vestibulo-ocular reflex, vergence) and gaze-holding. However, MIF motoneurons presented an overall reduced firing rate compared with SIF motoneurons, and had significantly lower recruitment threshold and also lower eye position and velocity sensitivities. Accordingly, MIF motoneurons could control mainly gaze in the off-direction, when less force is needed, whereas SIF motoneurons would contribute to increase muscle tension progressively toward the on-direction as more force is required. Anatomically, MIF and SIF motoneurons distributed intermingled within the abducens nucleus, with MIF motoneurons being smaller and having a lesser somatic synaptic coverage. Our data demonstrate the functional participation of both MIF and SIF motoneurons in fixations and slow and phasic eye movements, although their discharge properties indicate a functional segregation.Ministerio de Ciencia, Innovación y Universidades – Fondo Europeo de Desarrollo Regional (BFU2015-64515-P)Junta de Andalucía (BIO-297

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    First examinations with the newly installed posturographic platform at the University medical and dental center, Medical University – Varna, Bulgaria

    Get PDF
    BackgroundPosture of the human body aims to keep its balance when performing dynamic movements or in the static stance. Posturology is another term for the Global postural recalibration. It is the discipline which studies posture. Postural control is regulated by a complex system, known as the Tonic postural system. Stomatognathic system must not be excluded when discussing posture. Posturology enables clinicians to study the sensory information, entering the body and determine the sensor that work in a suboptimal manner.MethodsA clinical case of a female patient, fully diagnosed, using the newly implemented system, is presented. Apart from it, we have analyzed another fourteen patients. All first filled out specifically designed questionnaires and signed written informed consent forms. Static and dynamic postural, audiological, vestibular, visual and HSAT assessments were performed, along with a dental check-up.ResultsPatient had normal occlusal characteristics – class 1 Angle, but problems with the temporomandibular joint and slight hearing were present. No vestibular, posture (static or dynamic) or visual convergence abnormalities were detected. Refractive abnormalities were present. Apart from that, a group of patients with obstructive sleep apnea is presented. Changes of their posture and balance were studied.ConclusionsAll information gathered by the two integrated static and dynamic analysis systems, along with the postural analyzer, HSAT and dental analysis can be used to define therapeutic interventions and exercise programmes needed

    Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective

    Get PDF
    Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perceptionThis study was supported by the European Commission with the RoboSoft CA (A Coordination Action for Soft Robotics, contract #619319). SGN was supported by School of Engineering seed funding (2016), Malaysia Campus, Monash University

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology

    A Model of Artificial Genotype and Norm of Reaction in a Robotic System

    Get PDF
    The genes of living organisms serve as large stores of information for replicating their behavior and morphology over generations. The evolutionary view of genetics that has inspired artificial systems with a Mendelian approach does not take into account the interaction between species and with the environment to generate a particular phenotype. In this paper, a genotype model is suggested to shape the relationship with the phenotype and the environment in an artificial system. A method to obtain a genotype from a population of a particular robotic system is also proposed. Finally, we show that this model presents a similar behavior to that of living organisms in what regards the concept of norm of reaction.This paper describes research done at the UJI Robotic Intelligence Laboratory. Support for this laboratory is provided in part by Ministerio de Econom´ıa y Competitividad (DPI2015-69041-R), by Generalitat Valenciana (PROMETEOII/2014/028) and by Universitat Jaume I (P1-1B2014-52, PREDOC/ 2013/06)

    Aspects of the tectonics of the Greater Caucasus and Western South Caspian Basin

    Get PDF
    The main objectives of this project are to (a) understand the relationship between climate, topography and the tectonics in the Greater Caucasus belt, (b) construct regional geological cross-sections showing major stratigraphic sequences and structures along the belt using the focal mechanisms of the earthquakes events, (c) evaluate the evolution and development of a single fold structure (Yasamal anticline) and (d) investigate strain accommodation mechanisms using 3D Move to unfold the Yasamal structure. Topographic variations were investigated to understand the interplay between topography, climate and the tectonics of the Greater Caucasus range and compare the findings with other active and inactive belts (Pyrenees, Northern Tibetan Plateau and Himalayas). There is a correlation between elevation changes and climate along the Greater Caucasus belt, where the gradual reduction of the mean altitude, has a close relationship with a wetter climate, and the sharper altitude decrease with a drier climate. And the elevation changes are strongly correlated with the Moho depths underneath the region. The relief along the belt is extremely high, with a strong correlation between the high relief and the large thrusts in the region. And the relief of the eastern part is slightly low compared with the western part of the belt, even though the eastern part is more active than the western part. The structural study undertaken at regional scale for the Caucasus belt and the western side of the South Caspian Basin gave insights on the style of deformation in the basin and the evolution of the Greater Caucasus belt and the preferred distribution, geometry and formation mechanism of the structural elements. The regional cross-sections along the Greater Caucasus were constructed and constrained by using focal mechanisms show that the belt is deformed by active thrust faults that dip inwards from the margins of the range where the northern thrusts are dipping south, and the southern thrusts are dipping to the north, these results have contrary to some previous models that emphasise only south-directed thrusting. The spatial arrangement, geometry and temporal evolution of spectacular kilometre-amplitude fold structures actively forming in Cenozoic sediments on the uplifted western margin of the South Caspian Basin are described and strain accommodation mechanisms established using 3D Move to unfold the Yasamal structure enabled a reconstruction of pre-folding templates and predictively model the fold-related deformation at small-scale. The 3D model of the Yasamal anticline shows that the anticline hinge has about 30° south-directed plunging. The area was characterized by a low rate of sedimentation and high rate of uplift in the Upper Pliocene. The minor structures (accommodating the overall strain in the anticline) are developed throughout the entire anticline. Compressional strain is present at the anticline hinge line, and the extensional strain dominates the anticline limbs. Suggesting potential extensional structures development in the anticline flanks, which correspond with the field observations in the Yasamal valley confirming that; the small normal faults are concentrated within the anticline flanks, and the contractional deformation bands along the hinge area of the anticline
    corecore