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Abstract The genes of living organisms serve as large stores of informa-
tion for replicating their behavior and morphology over generations. The
evolutionary view of genetics that has inspired artificial systems with a
Mendelian approach does not take into account the interaction between
species and with the environment to generate a particular phenotype. In
this paper, a genotype model is suggested to shape the relationship with
the phenotype and the environment in an artificial system. A method to
obtain a genotype from a population of a particular robotic system is
also proposed. Finally, we show that this model presents a similar beha-
vior to that of living organisms in what regards the concept of norm of
reaction.
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1 Introduction

Nature has created a mechanism for transmission of information that allows
organisms to improve throughout the process of evolution. This information is
encoded in their genetic material. The way in which this information is decoded
in living organisms can be considered from distinct abstraction levels. The low
level regards the biochemistry and molecular reactions involved. Hence, a gene is
a section of a threadlike double-helical molecule called deoxyribonucleic acid [6].
The genes dictate the inherited properties of a species and allelic variations cause
hereditary variation within the species. The main elements of form in organisms
are proteins.The main task of the living system is to convert the information
contained in the DNA of genes into proteins [7].

A higher abstraction level considers how to connnect the genetic information
(genotype) stored in the DNA molecules with a specific characteristic of a living
organism (phenotype). In the theoretical scheme proposed by evolutionary ge-
netics, development is the function that maps the genotype onto the phenotype
(G → P ). It is known that the relationship genotype-phenotype is not one-to-
one at the lowest levels. At higher levels of interaction, such as morphological
traits, the genotype-phenotype relationship is even more complex.[1]. Genes can
not generate the structure of an organism by themselves. For a gene to have
any influence on a phenotype it must act in concert with many other genes and
with the external and internal environment. Hence, the G → P map is really
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G
E−→ P (GEP) map. For an understanding of this concept it is fundamental to

consider the role of phenotype plasticity and the idea of reaction norm, which
are introduced as the basic link relating the three variables (GEP). Phenotype
plasticity is the property of a given genotype to produce different phenotypes
in response to distinct environmental conditions. The fundamental conceptual
research tool in phenotypic plasticity is the idea of norm of reaction [10]. A norm
of reaction is a function that relates the environments to which a particular gen-
otype is exposed and the phenotypes that can be produced. In practice, such a
tabulation can only be made for a partial genotype, a partial phenotype, and
some particular aspects of the environment [6].

Frequently, this abstraction level has been used to model evolutionary beha-
viors in artificial systems. The G → P map is usually the basis of bio-inspired
genetic algorithms (GAs). However, such algorithms have been more concerned
with imitating the evolution process results in order to solve searching and op-
timization problems. Genetic algorithms emphasize the use of a “genotype” that
is decoded and evaluated. These genotypes are often simple data structures [14].
Genetic algorithms are a simple form of evolutionary algorithms (EAs). These
are composed of four components: a genotype, G → P mapping, a set of vari-
ation operators, and a user-defined function to be optimized, called a fitness
function. The EAs are often classified as “black-box optimization algorithms”
[3]. Overall, this kind of algorithms propose that, although evolution manifests
itself as a succession of changes in a species’ features, it is the changes in the
genetic material that form the essence of evolution [13]. The main idea of these
methods is based on the “genetic blueprint” or a “genetic programme”. In other
words, genes determine phenotypes. This sort of answer bypasses the process of
development, which is treated as an incidental blackbox with no direct causal
relevance to the evolutionary process [11]. From this point of view, changes in
the species are produced by isolated changes in the individuals. In addition, the
influence of the environment is limited to be used merely as a testbed to evaluate
the phenotype fitness. Evolutionary Robotics (ER) proposes to employ EAs to
design robots or, more often, control systems for robots.

Over millions of years of evolution, living organisms have adapted to different
environments and have competed for survival, allowing them to improve their
phenotypic attributes. From a conceptual standpoint, the information to gene-
rate living organisms has been transmitted in successive generations, improving
and diversifying in each iteration and generating the particular attributes in each
species. Nowadays, any species has the same common phenotype as a result of
evolution because this information is transferred to the new members by inheri-
tance. The species’ individuals have differences which are usually morphological,
but the main mechanism that accounts for these allelic differences is not mutation
in genes, as in clasical EAs.

The aim of this paper is to propose an artificial genotype data structure which
generates a given phenotype conditioned by an environment. In particular, this
work is focused on the way the species share functionalities using their genes.



To evaluate the performance of this proposed artificial genotype, a “species”
of robotic system is used. The artificial genotype for each species’ individual
is obtained and it is used to check the GEP model proposed. To do this, the
reaction norm of the species’ individuals is estimated. The proposed artificial
genotype shows the same behavior that a biological genotype does in relation to
phenotype plasticity.
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Figure 1: Schema of the proposed genotype model and the relationship with the
environment and phenotype

2 Model

2.1 Genotype model

The biochemical information stored in the DNA strings is converted in some
way in living organisms with their anatomy, physiology and behaviors. In the
proposed model, different types of information are defined according to the way
this information is encoded in living organisms. The genotype model proposed
transfers this information to a space parameters

– Allelic information. It is the information stored in DNA which encode
amino acids and proteins directly, so some phenotypes can be determined
directly by this information. This information is encoded by allelic para-
meters: Γ = {Γ1, Γ2, ..., Γa} | Γ ∈ Ra, where a is the number of encoded
allels.



– Species’ regulatory information. It is related to information stored in
DNA which does not encode amino acids directly, but is shared by all indi-
viduals of the species.This kind of data is encoded by the species’ regulatory
parameters(SRP). There are two kind of SRP parameters: the first class is the
regulatory parameters of transcription function: W = {W1,W2, ...,Wm, } |
Wi ∈ Rt where t is the number of combinations of the encoded proteins
from allelic genes, to encode a functional protein. The second class is the
combination parameters from allelic and species’ regulatory information:
ω = {ω1, ω2, ..., ωm} | ωi ∈ Ra,t, b = {b1, b2, ..., bn} | bi ∈ Rt.

– Species’ functional information. It is the information encoded in DNA
which is transformed into specific species’ phenotypes. The function of this
information is regulatory and regards the control of the functional combi-
nation of synthesized proteins from allelic information which is encoded by
the species’ functional parameters (SFP): Ω ∈ Rl,m, where l is the number
of the environment modifiers and m is the number of proteins which adjust
the obtained phenotype.

– Functional protein configuration. It is a sequence of proteins that are
obtained from the translation function and regulatory species information.
These proteins represent a certain phenotype which can be modified by the
environment. This kind of information is transferred into parametric space:
initial functional protein parameters(FPP 0), these parameters represents
the initial proteins synthesized from species’ genes, but they are going to be
modified by the interaction with the environment. Θ0 = {Θ0

1, Θ
0
2, ..., Θ

0
m} |

Θ0
i ∈ Rn where n is the number of parameters that define a phenotype. The

successive modified sets of functional parameters depend on the consecutive
environments where the individual has been adapted. This kind of parame-
ters are named adapted functional protein parameters:Θ = {Θ1, Θ2, ..., Θm} |
Θ0
i ∈ Rn where n is the number of parameters that define a phenotype.

2.2 GEP mapping model

So far, we have encoded the information stored in DNA in a parametric space.
The parameter space defined above can be considered as a data structure. Se-
veral operations can be established for modeling GEP mapping (fig. 1). Hence,
a species’ individual has got a genotype defined by the previous structure. One
part is specific for this individual (allelic information). In the biological case, this
information is represented by allelic genes which can be converted into proteins.
The transcription of one gene may be turned on or off by other genes called reg-
ulatory genes [6]. In the proposed system, this transcription process is modeled
by the transcription function (eq. 1).

Θ0 = Φ(ω, b, Γ )TW (1)

In a mathematical way, the transcription function is a regression model that
relates the allelic information with initial functional parameters. The SRP fit
this model and represent the information shared with every member of this
species that accounts for the phenotypic behavior.



Furthermore, proteins encoded by one gene may modify the proteins encoded
by a second gene in order to activate or deactivate protein function. The equi-
valent of the latter proteins are the SFP in the proposed model. These proteins
can also be modified by the environment through signal transduction. Moreover,
proteins encoded by one gene may bind to proteins from other genes to form an
active complex that performs some function. This is modeled by a transduction
function.

Ŷ = Ψ(Ω,X)TΘ (2)

This function finally generates a phenotype. From a mathematical point of view,
the transduction function is a recursive regression model, where there are some
input cues (X) that are combined with common fixed parameters (Ω) into a
nonlinear function Ψ for all the species individuals and the regression parameters
are Θ.

So far, the environment adaptation has not been considered. In 1930, Ronald
A. Fisher emphasized [4] that adaptation is characterized by the movement of a
population towards a phenotype that best fits the present environment. However,
this evolution is produced by changes in the individuals in this population. In
the proposed model, this is considered in the adaptation function.

Θe = Θe−1 +M(Y, Ŷ ) (3)

where e is the number of interacting successive environments. This equation has
to accomplish these limit restraints: when e = 0 → Θe = Θ0 and the difference
between Θe − Θe−1 has to tend to zero. The value Y is the optimal phenotype
and Ŷ is the current individual phenotype.

Eq. 3 expresses a sequence of changes in functional proteins modifying the
phenotype showed by the individual. The motor for these changes is the gap
between the optimal phenotype and the current phenotype expressed in a func-
tional way in the adaptation function. This had been defined as a first degree
dynamic system where its initial condition is defined by the initial functional
protein parameters. When the individual is adapted the gap between Y and Ŷ
has to be minimum (Θ∗

e). Once in this point, there might be another adapta-
tion stage for the individual, so Θ∗

e generates epigenetic changes in SRP. This
changes are propagated to the descendants improving Θ0 estimation. From an
information point of view, the environment adaptation is a learning procedure
whose goal is to learn the environment model to better predict the response to
environmental cues.

3 Case study

3.1 The robot species description

Of course, the genotype for a robotic system is not defined as a biological system,
but from an information point of view the model GEP can be considered valid
for a robot. In this case, the environment is the part of the universe with which



the robot interacts, i.e. it receives information through its sensors and modifies it
using its actuators. The phenotype comprises not only its morphology but also its
behavior. The genotype as defined above is composed of the allelic information,
which are the parameters or design variables of the robot, and the information
concerning the species. This last point is a critical question because it is not
usual to work with the concept of species in robotics. Two robots belong to the
same ”species” if they have the same number of design variables and show a
similar behavior in a similar environment.

Let us consider a species composed of robot heads. We have selected this
species because it presents sensor and actuators to interact with the environment.
These sensors and actuators may be different between individuals from the same
species. However, this species can show a behavior that is shared by all its
individuals, namely saccadic movements. This species is characterized for having
two cameras and 3 DOF. One of them for each camera and the other shared.
The morphological traits can be described from a robotics point of view as a
Denavit-Hartenberg model (Table 1). In addition, the sensor traits, are modeled
by the pinhole scheme. So each camera has several characteristics: focal length,
pixel size (supposed squared), height and width image resolution. Therefore,
the design parameters, which are individual traits into the same species, are
defined by a=16 values. This information corresponds to allelic information in
the proposed genotype model (Γ ∈ R16). The genotype-phenotype mapping of
this allelic information is directly the morphology and sensor properties of each
individual in the species and it is not dependent on the environment.

If other complex phenotypes are defined for every individual of this species,
for example, the ability to execute saccadic movements, the environment must be
considered. A saccade is a fast eye movement that shifts the gaze to a target point
and can be used to scan the visual space [2]. We will focus on the transformation
that links the visual position of a stimulus into a target position of the eyes, as
well as on feedback error learning (FEL) as described in [8]. In this method, there
are two inverse controllers. A fixed controller (B) that slowly drives the system
toward the target and provides a learning signal to a second adaptive controller
(Cf ). In this case, the phenotype is quantified by the gaze point after a saccade.
If the projection of the gaze point were in the center of the two images, the
phenotype would be optimal. Therefore, the gap for the adaptation function is
the difference between these gaze points.

3.2 The environment

The environment is a spatial region around the robot head. A virtual object
is randomly placed in the vision field of the two robot cameras. This object is
static related to the robot frame. To assure that these points cam be watched by
the two cameras at the same time, the environment region has been generated
from the minimal and maximum tilt, version and vergence angles of the heads.
For this reason the resulting region is not regular and the geometrical centroid
point is used to represent this spatial region.



Table 1: Denavit-Hartenberg model of
the left side of the head. ρp, ρt are the
revolute joints of the pan and common
tilt motors. The right side is the same
model and it shares the ρt joint

joint ρ(rad) r(m) a(m) α(rad) Offset Type

q1 ρt 0 0 π/2 π/2 R

q2 0 0 0 -π/2 0 P

q3 π/2 0.055 0 π/2 0 P

q4 π/2 0.055 0 π/2 0 P

q5 ρp 0 0 π/2 π R

q6 0 0.01 0 π/2 0 P
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Figure 2: Example of the head model

3.3 Applying the GEP model to the robotic system

To match the GEP model with the robot species proposed, it is necessary to
identify the transcription, activation and adaptation function. In the proposed
case, to adapt the saccadic behavior to the environment, the robot must learn
how it has to change the cameras position to gaze the object. The environment
transduction cues are the projection of the visual stimulus in the robot camera
images. They, combined with the propioception of the robot, must generate the
saccadic behavior. The transduction function is really the system controller. If
the robotic system had perfectly adapted to the environment, the projection of
the visual point in the images of the cameras would be in the center, exactly. So
the distance between the real projection to the image center could be considered
as a gap between the optimal phenotype and the showed phenotype. In the GEP
proposed model, the system controller represented by a transduction function
is modified by an adaptation function depending on the phenotype gap, so the
proposed system controller represented by a transduction function is really an
adaptive controller.

In the proposed FEL model [2] for one robot, there are two controllers, a fixed
one (B) and adaptive (Cf ), both contributions are the system controller. As B
is independent of the environment, it is possible to apply the G→ P model and
B can be estimated from allelic information (Γ ), directly. The Cf controller is
implemented by a single-layer neural network, with 7 inputs and 3 outputs. The
environment cues are defined by these seven inputs (l=7). Gaussian activations
using random space features [12] were used for the hidden layer. If these random
space features are the same for every species’ individual, they are the species’
functional parameters (Ω), because they regulate the phenotype function. The
weights in this network combine the activation functions, as the transduction
function is modified by functional proteins parameters in the proposed model,
hence these weights are Θ. The dimensions of Θ are the number of units in the
hidden layer (n) and the number of outputs (m). The adaptation function is



equivalent to adapt the weights in the neural network. In [2] the incremental
sparse spectrum Gaussian process regression (I-SSGPR) is used.

Finally, the transcription function is another regression model that relates
the allelic information with the initial functional parameters (Θ0). Hence, the
regression parameters can be obtained if Γ and Θ0 are known. The problem is
to fix the Θ0 value for each individual in the species.

3.4 Getting the robot genotype

Thus, if a population of robots from the same species is forced to adapt to the
same environment and to develop the same behavior, the shared information
that defines the behavior of all the species individuals can be extracted. To do
this:

1. A robot population is generated, changing their allelic information. The SRP
and FPP 0 are initialized randomly but they are the same for all the members
of the species.

2. Each individual is immersed into the same environment and it is forced to
adapt to get Θ∗

e from (eq. 3):

dM(Y, Ŷ )

de
≈ 0→ Θe = Θ∗

e (4)

3. With the Θ∗
e value for each individual and their allelic information, the tran-

scription function is converted into a regression problem where its parameters
are the SRP. A fixed environment is used to obtain these parameters. The
species individuals will adapt quickly in similar environments and slowlier
in different ones

Prismatic joints (cm)

Left size Right side

Γ p
i,1 = q2 ∈ [−0.054, 0.054] Γ p

i,2 = q2 = Γ p
i,1 + [0, 0.01]

Γ p
i,3 = q3 ∈ [0, 0.07] Γ p

i,4 = q3 = Γ p
i,3 + [0.035, 0.07]

Γ p
i,5 = q4 ∈ [−0.02, 0.054] Γ p

i,6 = q4 = Γ p
i,5 + [0, 0.02]

Γ p
i,7 = q6 ∈ [0, 0.01] Γ p

i,8 = q6 = Γ p
i,7 + [0, 0.01]

Cameras parameters: f (px); s(m/px);w(px);h(px)

Left camera Right camera

Γ p
i,9 = fl ∈ [340, 1920] Γ p

i,10 = fr = Γ p
i,9 + [0, 200]

Γ p
i,11 = sl ∈ [3. 10−6, 7. 10−6] Γ p

i,12 = sr ∈ [3. 10−6, 7. 10−6]

Γ p
i,13 = hl ∈ [340, 1920] Γ p

i,14 = hr = Γ p
i,13 + [0, 200]

Γ p
i,15 = wl ∈ [340, 1920] Γ p

i,16 = wr = Γ p
i,15 + [0, 200]

if Γ p
i,13 > Γ p

i,15, swap(Γ p
i,13, Γ

p
i,15) if Γ p

i,14 > Γ p
i,16, swap(Γ p

i,14, Γ
p
i,16)

Table 2: Design parameters to generate the allelic information



4 Experimental results

To validate the model fitting to a population of robots, the shared information by
every individual of this population must be known. In the living organism, this
information is encoded in DNA, but in robots, we have to set up an environment,
a behavior and an allelic encoded morphology for each individual in order to get
that shared information.

Once we have the species genotype model, we must check if this model shows
the same performance that the living organisms. That is, when an individual’s
genotype is completely defined and it is placed in different environments, the
phenotype has to be changed according to the norm of reaction.

4.1 Generating a population of robots

A robot model was used to simulate different robot head setups (44271 individu-
als were generated ) with allelic information as described in the previous section.
A reasonable interval is fixed to avoid unfeasible configurations. The values of
the left side of the head are chosen randomly and the right side is defined in a
random interval as shown in Table 2.

The generated population is split into three groups: (i) Adaptation group
(26500 individuals). This group is used to get an estimation of the transcription
function because there is no knowledge about the species regulatory parameters.
(ii) Control group (4500 individuals). This group is used to validate the species
regulatory parameters obtained from the adaptation group. (iii) Control popu-
lation (13271 individuals). This group is used to validate the obtained genotype.

4.2 Getting the genotype model from the generated population of
robots

Each of the individuals in the adaptation group, that were generated previously,
is immersed in the same environment and it starts the adaptation process inte-
racting with this environment. The FPP 0 are zero for all individuals because
there is no previous information. The SFP are randomly initialized, however
they are shared by all the species individuals. Hence, all of them show the same
initial degree of adaptation to this environment. The result of this adaptation
process is a set of pairs of allelic information (Γ ) and Θ∗

c (eq. 4).
From a robotics point of view, the used neural network controller has the

same value for the initial weights (zero) for all training cases. In addition, a
unique set of random sparse features are generated for all neural network con-
trollers. Each robot setup is trained with the same environment using the same
neural network parameters tuned previously [5]: variance of the model (σ2

n=0.1),
signal variance (σ2

f=1.0) and number of projections (m=300) so the number of
neural centers is 600. With these parameters the mathematical dimensions of
the proposed genotype are defined as: Γ ∈ R16 and Ω ∈ R3,300. The FPP 0

are Θ ∈ R3,600. The results of this process are the neural network weights for



each robotic head setup that allow the robot head to generate saccadic move-
ments. In figure 3a, there is an example of how the phenotype changes with
each adaptation. The relationship between the allelic and the species’ regulat-
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Figure 3

ory information connect the particular traits of an individual with specific traits
of the species. After the environment adaption described previously, a set of
allelic information, and species’ functional parameters are defined along with
a valid set of initial functional protein parameters for each individual. As it is
shown in (eq. 1), the transcription function is a regression model. Hence, it is
possible to use any regression method to estimate the parameters (ω, b, Γ ). The
challenge is to solve the dimensional problem. In particular, the mapping from
Γ (16 dimensions) to Θ (1800 dimensions). Fortunately, due to the fact that
the weights of a trained network are independent among them, the regression
problem can be decomposed into multiple smaller regression problems. Each Θi
is influenced by Γ independently of the rest of Γ . The problem is transformed
into solving 1800=(3x600 dimensions of Θ) small regression problems. In this
way, the SRP are the set of parameters of each regression. The regression tool
used is a MLP neural network with 16 inputs, 10 units in the hidden layer and
one output. The hyperbolic tangent function was used for the hidden layer and
the output layer was linear. The algorithm to train each network was the scaled
conjugate gradient descent (SCG) [9]. The performance follows from comparing
the weights obtained after training the adaptive controller and those estimated
by the neural network stack. The training result for the adaptation group has
a mean square error equal to (2.19 ± 0.43)10−4. In this way the SRP are 1800
matrices and vectors: ω ∈ R16,10, b ∈ R10 and W ∈ R10.

The result of this procedure is a set of 44500 individuals with their own
allelic information that generates different traits in the same species. Hence,



there are 44500 different genotypes, but every individual has the same SRP and
SFP characterized by Ω and (ω, b, Γ ).

4.3 The genotypes’ norm of reaction

For each individual in the species, one artificial genotype is defined. When the
individual is placed in a distribution of environments, a distribution of pheno-
types results. This relationship is regulated by the norm of reaction. Therefore,
each individual in the control population is characterized by its norm of reaction.
The defined environment is a spatial region in front of the robotic system, so
one way to create a distribution of environments is to displace this region in one
axis direction. Then, the robot system is placed in each environment. The FPP 0

are generated with the allelic information and SRP from its artificial genotype
using the transcription function. The robot interacts with the environment using
the transduction function and the SFP parameters from its artificial genotype
and it adapts to the environment using the adaptation function. The phenotype
is measured in this case study as the mean distance to the centers of images.
Finally, a set of pairs of phenotype (distance in pixels) and environment vari-
ations (exploration space distance in meters) is obtained. For the sake of clarity,
we randomly selected three individuals from the control group and we represent
the obtained pairs of values PE (figure 3b). It can be observed that there is a
linear correlation. The mean squared correlation coefficient for the control group
is R2 = (0.930± 0.034) for linear regression of their norms of reaction.

5 Discussion

Figure 3b shows three examples of the proposed genotype model. These samples
represent three robotic systems from the same species which show a specific
phenotype after an adaptation process using the explained model. These results
are similar for every robot in the control group, as the value of R2 shows. Be-
yond the shape of the curves, this experiment shows: (i) The proposed genotype
model is able to show different behaviors (different curves) for each individual
robotic system. (ii) The relationship between environments and phenotype can
be handled (linearly in this case) by the proposed model. (iii) For a species indi-
vidual with its genotype, we obtained different phenotypes in response to distinct
environmental conditions, in a certain way, phenotype plasticity is achieved by
the proposed model. This differs from classical models used in genetic and evo-
lutionary algorithms, which only consider allelic information for determining an
individual’s phenotype. This is a key point due to the fact that the plasticity of
a robot system is achieved without changing the individual genotype.

6 Conclusions

We proposed an artificial genotype model based on the GEP relationship that
exists in living organisms. To do this, we extracted the common information from



all the individuals in a species and then we used it to define their genotypes
by mixing it with the specific individual differences (allelic information). The
obtained result is equivalent to norm of reaction behavior in living organisms.
Therefore, the proposed model of genotype is able to behave as a biological
genotype in relation to phenotype and environment. In the case study, the norm
of reaction is able to generate phenotypic plasticity as in living organisms. We
tested this artificial genotype in a robot system estimating the species parameters
and generating norm of reaction curves similar to those obtained by biologists
for living organisms.
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