2,437 research outputs found

    Max-Min Greedy Matching

    Get PDF
    A bipartite graph G(U,V;E) that admits a perfect matching is given. One player imposes a permutation pi over V, the other player imposes a permutation sigma over U. In the greedy matching algorithm, vertices of U arrive in order sigma and each vertex is matched to the highest (under pi) yet unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching problem asks: suppose the first (max) player reveals pi, and the second (min) player responds with the worst possible sigma for pi, does there exist a permutation pi ensuring to match strictly more than a half of the vertices? Can such a permutation be computed in polynomial time? The main result of this paper is an affirmative answer for these questions: we show that there exists a polytime algorithm to compute pi for which for every sigma at least rho > 0.51 fraction of the vertices of V are matched. We provide additional lower and upper bounds for special families of graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations

    Families of graph-different Hamilton paths

    Full text link
    Let D be an arbitrary subset of the natural numbers. For every n, let M(n;D) be the maximum of the cardinality of a set of Hamiltonian paths in the complete graph K_n such that the union of any two paths from the family contains a not necessarily induced cycle of some length from D. We determine or bound the asymptotics of M(n;D) in various special cases. This problem is closely related to that of the permutation capacity of graphs and constitutes a further extension of the problem area around Shannon capacity. We also discuss how to generalize our cycle-difference problems and present an example where cycles are replaced by 4-cliques. These problems are in a natural duality to those of graph intersection, initiated by Erd\"os, Simonovits and S\'os. The lack of kernel structure as a natural candidate for optimum makes our problems quite challenging

    Hamiltonicity of 3-arc graphs

    Get PDF
    An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v,u,x,y)(v,u,x,y) of vertices such that both (v,u,x)(v,u,x) and (u,x,y)(u,x,y) are paths of length two. The 3-arc graph of a graph GG is defined to have vertices the arcs of GG such that two arcs uv,xyuv, xy are adjacent if and only if (v,u,x,y)(v,u,x,y) is a 3-arc of GG. In this paper we prove that any connected 3-arc graph is Hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are Hamiltonian. As a consequence we obtain that if a vertex-transitive graph is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three, then it is Hamiltonian. This confirms the well known conjecture, that all vertex-transitive graphs with finitely many exceptions are Hamiltonian, for a large family of vertex-transitive graphs. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.Comment: in press Graphs and Combinatorics, 201

    Between Treewidth and Clique-width

    Full text link
    Many hard graph problems can be solved efficiently when restricted to graphs of bounded treewidth, and more generally to graphs of bounded clique-width. But there is a price to be paid for this generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that are all FPT parameterized by treewidth but none of which can be FPT parameterized by clique-width unless FPT = W[1], as shown by Fomin et al [7, 8]. We therefore seek a structural graph parameter that shares some of the generality of clique-width without paying this price. Based on splits, branch decompositions and the work of Vatshelle [18] on Maximum Matching-width, we consider the graph parameter sm-width which lies between treewidth and clique-width. Some graph classes of unbounded treewidth, like distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized by sm-width
    corecore