4,617 research outputs found

    A Logic-Independent IDE

    Full text link
    The author's MMT system provides a framework for defining and implementing logical systems. By combining MMT with the jEdit text editor, we obtain a logic-independent IDE. The IDE functionality includes advanced features such as context-sensitive auto-completion, search, and change management.Comment: In Proceedings UITP 2014, arXiv:1410.785

    Abstract verification and debugging of constraint logic programs

    Get PDF
    The technique of Abstract Interpretation [13] has allowed the development of sophisticated program analyses which are provably correct and practical. The semantic approximations produced by such analyses have been traditionally applied to optimization during program compilation. However, recently, novel and promising applications of semantic approximations have been proposed in the more general context of program verification and debugging [3],[10],[7]

    Extensible sparse functional arrays with circuit parallelism

    Get PDF
    A longstanding open question in algorithms and data structures is the time and space complexity of pure functional arrays. Imperative arrays provide update and lookup operations that require constant time in the RAM theoretical model, but it is conjectured that there does not exist a RAM algorithm that achieves the same complexity for functional arrays, unless restrictions are placed on the operations. The main result of this paper is an algorithm that does achieve optimal unit time and space complexity for update and lookup on functional arrays. This algorithm does not run on a RAM, but instead it exploits the massive parallelism inherent in digital circuits. The algorithm also provides unit time operations that support storage management, as well as sparse and extensible arrays. The main idea behind the algorithm is to replace a RAM memory by a tree circuit that is more powerful than the RAM yet has the same asymptotic complexity in time (gate delays) and size (number of components). The algorithm uses an array representation that allows elements to be shared between many arrays with only a small constant factor penalty in space and time. This system exemplifies circuit parallelism, which exploits very large numbers of transistors per chip in order to speed up key algorithms. Extensible Sparse Functional Arrays (ESFA) can be used with both functional and imperative programming languages. The system comprises a set of algorithms and a circuit specification, and it has been implemented on a GPGPU with good performance

    The End of History? Using a Proof Assistant to Replace Language Design with Library Design

    Get PDF
    Functionality of software systems has exploded in part because of advances in programming-language support for packaging reusable functionality as libraries. Developers benefit from the uniformity that comes of exposing many interfaces in the same language, as opposed to stringing together hodgepodges of command-line tools. Domain-specific languages may be viewed as an evolution of the power of reusable interfaces, when those interfaces become so flexible as to deserve to be called programming languages. However, common approaches to domain-specific languages give up many of the hard-won advantages of library-building in a rich common language, and even the traditional approach poses significant challenges in learning new APIs. We suggest that instead of continuing to develop new domain-specific languages, our community should embrace library-based ecosystems within very expressive languages that mix programming and theorem proving. Our prototype framework Fiat, a library for the Coq proof assistant, turns languages into easily comprehensible libraries via the key idea of modularizing functionality and performance away from each other, the former via macros that desugar into higher-order logic and the latter via optimization scripts that derive efficient code from logical programs

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Verifying Safety Properties With the TLA+ Proof System

    Get PDF
    TLAPS, the TLA+ proof system, is a platform for the development and mechanical verification of TLA+ proofs written in a declarative style requiring little background beyond elementary mathematics. The language supports hierarchical and non-linear proof construction and verification, and it is independent of any verification tool or strategy. A Proof Manager uses backend verifiers such as theorem provers, proof assistants, SMT solvers, and decision procedures to check TLA+ proofs. This paper documents the first public release of TLAPS, distributed with a BSD-like license. It handles almost all the non-temporal part of TLA+ as well as the temporal reasoning needed to prove standard safety properties, in particular invariance and step simulation, but not liveness properties
    • …
    corecore