6 research outputs found

    On the hyperbolicity of random graphs

    Get PDF
    Let G=(V,E)G=(V,E) be a connected graph with the usual (graph) distance metric d:V×V→N∪{0}d:V \times V \to N \cup \{0 \}. Introduced by Gromov, GG is δ\delta-hyperbolic if for every four vertices u,v,x,y∈Vu,v,x,y \in V, the two largest values of the three sums d(u,v)+d(x,y),d(u,x)+d(v,y),d(u,y)+d(v,x)d(u,v)+d(x,y), d(u,x)+d(v,y), d(u,y)+d(v,x) differ by at most 2δ2\delta. In this paper, we determinate the value of this hyperbolicity for most binomial random graphs.Comment: 20 page

    Mathematical Properties on the Hyperbolicity of Interval Graphs

    Get PDF
    Gromov hyperbolicity is an interesting geometric property, and so it is natural to study it in the context of geometric graphs. In particular, we are interested in interval and indifference graphs, which are important classes of intersection and Euclidean graphs, respectively. Interval graphs (with a very weak hypothesis) and indifference graphs are hyperbolic. In this paper, we give a sharp bound for their hyperbolicity constants. The main result in this paper is the study of the hyperbolicity constant of every interval graph with edges of length 1. Moreover, we obtain sharp estimates for the hyperbolicity constant of the complement of any interval graph with edges of length 1.This paper was supported in part by a grant from CONACYT (FOMIX-CONACyT-UAGro 249818), México and by two grants from the Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2015-69323-REDT), Spain. We would like to thank the referees for their careful reading of the manuscript and several useful comments that have helped us to improve the presentation of the paper

    On Computing the Hyperbolicity of Real-World Graphs

    Get PDF
    International audienceThe (Gromov) hyperbolicity is a topological property of a graph, which has been recently applied in several different contexts, such as the design of routing schemes, network security, computational biology, the analysis of graph algorithms, and the classification of complex networks. Computing the hyperbolicity of a graph can be very time consuming: indeed, the best available algorithm has running-time O(n^{3.69}), which is clearly prohibitive for big graphs. In this paper, we provide a new and more efficient algorithm: although its worst-case complexity is O(n^4), in practice it is much faster, allowing, for the first time, the computation of the hyperbolicity of graphs with up to 200,000 nodes. We experimentally show that our new algorithm drastically outperforms the best previously available algorithms, by analyzing a big dataset of real-world networks. Finally, we apply the new algorithm to compute the hyperbolicity of random graphs generated with the Erdös-Renyi model, the Chung-Lu model, and the Configuration Model

    Aspects of random graphs

    Get PDF
    The present report aims at giving a survey of my work since the end of my PhD thesis "Spectral Methods for Reconstruction Problems". Since then I focussed on the analysis of properties of different models of random graphs as well as their connection to real-world networks. This report's goal is to capture these problems in a common framework. The very last chapter of this thesis about results in bootstrap percolation is different in the sense that the given graph is deterministic and only the decision of being active for each vertex is probabilistic; since the proof techniques resemble very much results on random graphs, we decided to include them as well. We start with an overview of the five random graph models, and with the description of bootstrap percolation corresponding to the last chapter. Some properties of these models are then analyzed in the different parts of this thesis

    Symmetry in Graph Theory

    Get PDF
    This book contains the successful invited submissions to a Special Issue of Symmetry on the subject of ""Graph Theory"". Although symmetry has always played an important role in Graph Theory, in recent years, this role has increased significantly in several branches of this field, including but not limited to Gromov hyperbolic graphs, the metric dimension of graphs, domination theory, and topological indices. This Special Issue includes contributions addressing new results on these topics, both from a theoretical and an applied point of view
    corecore