59 research outputs found

    Tight Sum-of-Squares lower bounds for binary polynomial optimization problems

    Get PDF
    We give two results concerning the power of the Sum-of-Squares(SoS)/Lasserre hierarchy. For binary polynomial optimization problems of degree 2d2d and an odd number of variables nn, we prove that n+2d−12\frac{n+2d-1}{2} levels of the SoS/Lasserre hierarchy are necessary to provide the exact optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito. Additionally, we study a conjecture by Laurent, who considered the linear representation of a set with no integral points. She showed that the Sherali-Adams hierarchy requires nn levels to detect the empty integer hull, and conjectured that the SoS/Lasserre rank for the same problem is n−1n-1. We disprove this conjecture and derive lower and upper bounds for the rank

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    A Semidefinite Programming approach for minimizing ordered weighted averages of rational functions

    Full text link
    This paper considers the problem of minimizing the ordered weighted average (or ordered median) function of finitely many rational functions over compact semi-algebraic sets. Ordered weighted averages of rational functions are not, in general, neither rational functions nor the supremum of rational functions so that current results available for the minimization of rational functions cannot be applied to handle these problems. We prove that the problem can be transformed into a new problem embedded in a higher dimension space where it admits a convenient representation. This reformulation admits a hierarchy of SDP relaxations that approximates, up to any degree of accuracy, the optimal value of those problems. We apply this general framework to a broad family of continuous location problems showing that some difficult problems (convex and non-convex) that up to date could only be solved on the plane and with Euclidean distance, can be reasonably solved with different â„“p\ell_p-norms and in any finite dimension space. We illustrate this methodology with some extensive computational results on location problems in the plane and the 3-dimension space.Comment: 27 pages, 1 figure, 7 table
    • …
    corecore