research

Tight Sum-of-Squares lower bounds for binary polynomial optimization problems

Abstract

We give two results concerning the power of the Sum-of-Squares(SoS)/Lasserre hierarchy. For binary polynomial optimization problems of degree 2d2d and an odd number of variables nn, we prove that n+2d12\frac{n+2d-1}{2} levels of the SoS/Lasserre hierarchy are necessary to provide the exact optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito. Additionally, we study a conjecture by Laurent, who considered the linear representation of a set with no integral points. She showed that the Sherali-Adams hierarchy requires nn levels to detect the empty integer hull, and conjectured that the SoS/Lasserre rank for the same problem is n1n-1. We disprove this conjecture and derive lower and upper bounds for the rank

    Similar works