2,594 research outputs found

    Index theorems for quantum graphs

    Get PDF
    In geometric analysis, an index theorem relates the difference of the numbers of solutions of two differential equations to the topological structure of the manifold or bundle concerned, sometimes using the heat kernels of two higher-order differential operators as an intermediary. In this paper, the case of quantum graphs is addressed. A quantum graph is a graph considered as a (singular) one-dimensional variety and equipped with a second-order differential Hamiltonian H (a "Laplacian") with suitable conditions at vertices. For the case of scale-invariant vertex conditions (i.e., conditions that do not mix the values of functions and of their derivatives), the constant term of the heat-kernel expansion is shown to be proportional to the trace of the internal scattering matrix of the graph. This observation is placed into the index-theory context by factoring the Laplacian into two first-order operators, H =A*A, and relating the constant term to the index of A. An independent consideration provides an index formula for any differential operator on a finite quantum graph in terms of the vertex conditions. It is found also that the algebraic multiplicity of 0 as a root of the secular determinant of H is the sum of the nullities of A and A*.Comment: 19 pages, Institute of Physics LaTe

    Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations

    Get PDF

    Robust and efficient solution of the drum problem via Nystrom approximation of the Fredholm determinant

    Full text link
    The drum problem-finding the eigenvalues and eigenfunctions of the Laplacian with Dirichlet boundary condition-has many applications, yet remains challenging for general domains when high accuracy or high frequency is needed. Boundary integral equations are appealing for large-scale problems, yet certain difficulties have limited their use. We introduce two ideas to remedy this: 1) We solve the resulting nonlinear eigenvalue problem using Boyd's method for analytic root-finding applied to the Fredholm determinant. We show that this is many times faster than the usual iterative minimization of a singular value. 2) We fix the problem of spurious exterior resonances via a combined field representation. This also provides the first robust boundary integral eigenvalue method for non-simply-connected domains. We implement the new method in two dimensions using spectrally accurate Nystrom product quadrature. We prove exponential convergence of the determinant at roots for domains with analytic boundary. We demonstrate 13-digit accuracy, and improved efficiency, in a variety of domain shapes including ones with strong exterior resonances.Comment: 21 pages, 7 figures, submitted to SIAM Journal of Numerical Analysis. Updated a duplicated picture. All results unchange

    Derivations and Dirichlet forms on fractals

    Get PDF
    We study derivations and Fredholm modules on metric spaces with a local regular conservative Dirichlet form. In particular, on finitely ramified fractals, we show that there is a non-trivial Fredholm module if and only if the fractal is not a tree (i.e. not simply connected). This result relates Fredholm modules and topology, and refines and improves known results on p.c.f. fractals. We also discuss weakly summable Fredholm modules and the Dixmier trace in the cases of some finitely and infinitely ramified fractals (including non-self-similar fractals) if the so-called spectral dimension is less than 2. In the finitely ramified self-similar case we relate the p-summability question with estimates of the Lyapunov exponents for harmonic functions and the behavior of the pressure function.Comment: to appear in the Journal of Functional Analysis 201
    • …
    corecore