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SYMBOLIC DYNAMICS, AUTOMORPHIC FUNCTIONS, AND

SELBERG ZETA FUNCTIONS WITH UNITARY

REPRESENTATIONS

ANKE D. POHL

Abstract. Using Hecke triangle surfaces of finite and infinite area as exam-
ples, we present techniques for thermodynamic formalism approaches to Sel-
berg zeta functions with unitary finite-dimensional representations (V, χ) for
hyperbolic surfaces (orbifolds) Γ\H as well as transfer operator techniques to
develop period-like functions for (Γ, χ)-automorphic cusp forms. This leads to
several natural conjectures. We further show how to extend these results to
the billiard flow on the underlying triangle surfaces, and study the convergence
of transfer operators along sequences of Hecke triangle groups.

1. Introduction

The intimate relation between the geometric and spectral properties of Riemannian
locally symmetric spaces is of utmost interest in various areas, including dynamical
systems, spectral theory, harmonic analysis, representation theory, number theory
and quantum chaos, and contributes to their cross-fertilization. It is one reason for
the increasing number of competing or complementary approaches via dynamical
systems and ergodic theory on the one hand, and, e.g., harmonic analysis and
analytic number theory on the other hand (see, for example, [9, 10] or [17, 35, 37]).
Up to date, the full extent of this relation, its consequences and the properties
of several entities on the geometric and the spectral side remain an active area of
research.

Over the last three decades, mostly for hyperbolic surfaces, an approach comple-
mentary to the classical analytic and number-theoretic methods emerged within
the framework of the thermodynamic formalism of statistical mechanics: transfer
operator techniques. These techniques focus on the dynamics of the geodesic flows
rather than on the geometry of the surfaces, which allowed to establish results,
a few mentioned below, hitherto unattained by any other method, or to provide
alternative proofs to known results.

One such class of examples are classical dynamical approaches to Laplace eigen-
functions, most notably Maass cusp forms, as well as representations of Selberg
zeta functions as Fredholm determinants of transfer operator families, which allow
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2 A. POHL

us to show their meromorphic continuations. The modular surface

PSL2(Z)\H = PSL2(Z)\PSL2(R)/PSO(2)

had been the first instance for which such transfer operator approaches could be
established. For this, Mayer [18, 19] considered the Gauss map

K : [0, 1] \Q→ [0, 1] \Q, x 7→ 1

x
mod 1,

which is well-known to derive from a symbolic dynamics for the geodesic flow on
the modular surface [1, 34]. He investigated its associated transfer operator LK,s

with parameter s ∈ C, hence the operator

LK,sf(x) =
∑

n∈N

(x+ n)−2sf

(
1

x+ n

)
,

and found a Banach space B on which, for Re s > 1/2, the operator LK,s acts, is
nuclear of order 0, and the map s 7→ LK,s has a meromorphic extension to all of
C (which we also denote by LK,s). The Selberg zeta function Z for the modular
surface is then given as the product of the Fredholm determinants

(1) Z(s) = det(1− LK,s) det(1 + LK,s).

This provides an alternative proof of the meromorphic extension of the Selberg
zeta function. Even more, it shows that the zeros of Z are determined by the
eigenfunctions with eigenvalue ±1 of LK,s in B. The natural question whether
these eigenfunctions, for Re s = 1/2, actually characterize the (even/odd) Maass
cusp forms for PSL2(Z) could be answered affirmately. Both Lewis–Zagier [16] and
Chang–Mayer [5] showed that these eigenfunctions are bijective to highly regular
solutions of the functional equation

(2) f(x) = f(x+ 1) + (x+ 1)−2sf
( x

x+ 1

)
, x ∈ R>0

and satisfy in addition a certain symmetry. Without using any Selberg theory,
Lewis–Zagier [16] continued to show that these solutions are in bijection with the
even/odd Maass cusp forms, which justifies to call them period functions (in anal-
ogy to the period polynomials in Eichler–Shimura theory). In total, this transfer
operator/thermodynamic formalism approach complements Selberg theory in the
following sense: it provides a characterization of Maass cusp forms as eigenfunc-
tions of transfer operators which are constructed using only the geodesic flow on
the modular surface. Thus it gives a classical dynamical characterization of the
Maass cusp forms themselves, not only of their spectral parameters. Moreover, by
taking Fredholm determinants, it recovers the interpretation of (some of) the zeros
of the Selberg zeta function.

Such kinds of results are quite sensitive to the choice of the discretization and
symbolic dynamics for the geodesic flow on the considered hyperbolic surface Γ\H.
For subgroups Γ of PSL2(Z) of finite index they could be shown by “twisting” the
PSL2(Z)-setup with the unitary representation of PSL2(Z) induced from the trivial
one-dimensional representation of Γ [6, 7, 8]. In this way, the symbolic dynamics,
the transfer operators and the functional equation get pushed from PSL2(Z) to Γ,
and the representation essentially serves as a bookkeeping device for the cosets of
Γ\PSL2(Z). An alternative symbolic dynamics for PSL2(Z) was used in [4]. All
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other used discretizations and symbolic dynamics only led (yet) to a representation
of the Selberg zeta function as a Fredholm determinant [32, 22, 11, 20].

In [26, 30] (see also [13]) we constructed discretizations for the geodesic flow on
hyperbolic spaces Γ\H for Fuchsian groups Γ with at least one cusp and satisfying
an additional (weak) geometric condition. These discretizations/symbolic dynam-
ics are tailor-made for the requirements of transfer operator approaches to Maass
cusp forms and Selberg zeta functions. They allowed us to develop the following re-
definition of the structure of these approaches: We first construct a certain discrete
dynamical system on the geodesic boundary of H and a certain symbolic dynamics
on a finite alphabet (we call these systems “slow”). Hence the transfer operators
associated to these systems have only finitely many terms, and their eigenfunctions
are therefore obviously characterized by finite-term functional equations. If Γ is a
lattice, then the highly regular eigenfunctions with eigenvalue 1 (period functions)
are in bijection with the Maass cusp forms for Γ [21, 29, 27].

Thus, as in the seminal approach for PSL2(Z), we provide classical dynamical
characterizations of the Maass cusp forms. But in contrast we do not need to make
a detour to the Selberg zeta function and then hope for a finite-term functional
equation to pop out of an infinite-term transfer operator. Our transfer operators
provide us in an immediate and natural way with the necessary functional equations.
For PSL2(Z) our transfer operators are

Lsf(x) = f(x+ 1) + (x+ 1)−2sf
( x

x+ 1

)
.

They obviously reproduce the Lewis–Zagier functional equation (2).

These slow systems are not uniformly expanding for which reason the finite-term
transfer operators are not nuclear and cannot represent the Selberg zeta function
as a Fredholm determinant. To overcome this obstacle, we apply an accelera-
tion/induction procedure to provide a uniformly expanding discrete dynamical sys-
tem and symbolic dynamics, which necessarily uses an infinite alphabet. We call
these systems “fast”. The associated infinite-term transfer operators then represent
the Selberg zeta function. Also here we recover Mayer’s transfer operator. In [21]
this induction procedure is performed for cofinite Hecke triangle groups, in this
article for Γ0(2) respectively the Theta group, and in [31] for non-cofinite Hecke
triangle groups. In a forthcoming article it will be shown for all admissible Γ.

In [28] we used the idea of these parallel, but closely related, fast/slow systems for
the billiard flow on the triangle surface underlying the Hecke triangle surfaces. We
showed how specific weights of these systems allow us to accommodate Dirichlet
resp. Neumann boundary value conditions, and in turn to geometrically separate
odd and even Maass cusp forms. These results illuminate the factorization of the
Selberg zeta function in (1) and explain the additional symmetries needed for the
solutions of the functional equation (2).

Another class of examples of crucial input from transfer operators are studies of
resonances for hyperbolic surfaces of infinite area. For Schottky surfaces (convex
cocompact surfaces with no cusps and no elliptic points) the standard Markov sym-
bolic dynamics gives rise to transfer operators which represent the Selberg zeta func-
tion. This representation is indispensable for proving the results on the distribution
of resonances in [12, 23] and the (numerical) investigations of their fine structure
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in [2, 38]. Our construction of fast/slow systems also applies to non-cofinite Hecke
triangle groups [31] (forthcoming work will extend it to other Fuchsian groups as
well). We expect that the arising transfer operators now allow us to extend these
results on resonances to infinite-area surfaces with cusps. Moreover, the transfer
operators arising from the slow systems lead to natural conjectures on the residues
at the resonances.

In this article we show how to generalize these parallel slow/fast transfer operator
techniques to accommodate an arbitrary finite-dimensional unitary representation
(V, χ) of the Fuchsian group Γ under consideration. This provides us with thermo-
dynamic formalism approaches to the Selberg zeta functions for the automorphic
Laplacian with respect to χ (Section 5), and leads to several conjectures on period
functions for (Γ, χ)-automorphic cusp forms as well as, for infinite-area situations,
to conjectures on the residues at the resonances (Section 4).

We restrict ourselves here to cofinite and non-cofinite Hecke triangle groups. How-
ever, it is obvious that these techniques apply (in the same way) to other Fuchsian
groups as well. The restriction to this class of Fuchsian groups has two reasons. Be-
sides the necessity to keep this article to a reasonable length, Hecke triangle groups
form a family containing cofinite and non-cofinite Fuchsian groups as well as arith-
metic and non-arithmetic lattices which, in a certain sense, deform into each other.
Further, the Phillips–Sarnak conjecture [24, 25, 15, 14] states that even Maass cusp
forms should not exist for generic cofinite Hecke triangle groups, whereas odd Maass
cusp forms are known to exist in abundance. Both, the conjecture and the results
in [15, 14], are based on deformation theory. In Section 4.4 we therefore discuss the
convergence of transfer operators along sequences of Hecke triangle groups.

It is well-known that any decomposition of the representation yields a corresponding
factorization of the Selberg zeta functions. In Section 6, we use our results to show
that this decomposition already happens at the level of transfer operators and that
the factorization of the zeta functions is merely a shadow of it.

All Hecke triangle groups commute with the matrix element
[
−1 0
0 1

]
∈ PGL2(R).

Our constructions respect this symmetry in the sense that it is inherited to the
discretizations, discrete dynamical systems and transfer operators. In Section 7 we
briefly survey how to extend our results to transfer operator approaches for the
billiard flow on the triangle surfaces underlying the Hecke triangle surfaces, how it
can be used to distinguish the odd and even eigenfunctions and to provide separate
dynamical zeta functions for different boundary conditions.

2. Preliminaries

2.1. Hyperbolic geometry. Throughout we use the upper half plane

H := {z ∈ C | Im z > 0}
endowed with the well-known hyperbolic Riemannian metric given by the line ele-
ment

ds2 =
dzdz

(Im z)2
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as model for the hyperbolic plane. We identify its geodesic boundary with P 1(R) ∼=
R ∪ {∞}. The group of Riemannian isometries on H is isomorphic to PGL2(R),
whose action on H extends continuously to P 1(R). Its subgroup of orientation-
preserving Riemannian isometries is then PSL2(R), which acts by fractional linear
transformations. Hence, for

[
a b
c d

]
∈ PSL2(R) and z ∈ H ∪R we have

[
a b
c d

]
.z =

{
az+b
cz+d for cz + d 6= 0

∞ for cz + d = 0
and

[
a b
c d

]
.∞ =

{
a
c for c 6= 0

∞ for c = 0.

Let

(3) Q :=

[
0 1
1 0

]
∈ PGL2(R).

Then

Q.z =
1

z
, Q.∞ = 0,

and
PGL2(R) = PSL2(R) ∪Q.PSL2(R).

Clearly, the action of PGL2(R) on H induces an action on the unit tangent bundle
SH of H.

2.2. Hecke triangle groups. Let λ > 0. The subgroup of PSL2(R) generated by
the two elements

(4) S :=

[
0 1
−1 0

]
and Tλ :=

[
1 λ
0 1

]

is called the Hecke triangle group Γλ with parameter λ. It is Fuchsian (i.e., discrete)
if and only if λ ≥ 2 or λ = 2 cos π

q with q ∈ N≥3. In the following we only consider

Fuchsian Hecke triangle groups. A fundamental domain for Γλ is given by (see
Figure 1)

Fλ := {z ∈ H | |z| > 1, |Re z| < λ/2}.

−λ
2

0 λ
2

−λ
2

0 λ
2

−λ
2
−1 0 1 λ

2

λ < 2 λ = 2 λ > 2

Figure 1. Fundamental domain for Γλ.

The side-pairings are provided by the generators (4): the vertical sides {Re z =
−λ/2} and {Re z = λ/2} are identified via Tλ, and the bottom sides {|z| = 1, Re z ≤
0} and {|z| = 1, Re z ≥ 0} via S. The associated orbifold

Xλ := Γλ\H
is called a Hecke triangle surface.
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Among the Fuchsian Hecke triangle groups precisely those with parameter λ ≤ 2
are lattices. For λ = λ(q) = 2 cos π

q with q ∈ N≥3, Xλ has one cusp (represented

by ∞) and two elliptic points. In the special case q = 3, thus λ(q) = 1, the Hecke
triangle group Γ1 is just the modular group PSL2(Z). The Hecke triangle group Γ2

is called the Theta group. It is conjugate to the projective version of Γ0(2). Hence
X2 has two cusps (represented by ∞ and λ/2) and one elliptic point. The groups
Γλ for λ > 2 are non-cofinite, the orbifold Xλ has one funnel (represented by the
subset [−λ/2,−1] ∪ [1, λ/2] of R), one cusp (represented by ∞) and one elliptic
point.

For each Hecke triangle group Γλ and each cuspidal point c of Γλ, we let Stab(c,Γλ)
denote the stabilizer group of c in Γλ. As it is well-known, these are generated by
a single (parabolic) element, say by Pc. We may choose P∞ = Tλ, and for λ = 2,
P−1 =

[
2 1
−1 0

]
.

2.3. Representations. Let χ be a unitary representation of Γλ on a finite-dimen-
sional complex inner product space V . Let p ∈ Γλ be parabolic. We call χ singular
in the cusp represented by p if

dimker(χ(p)− 1) > 0,

where 1 is the identity operator on V . If χ is singular in at least one cusp, then we
call χ singular. Otherwise we say χ is regular. Further, we call

sd(χ) := max{dimker(χ(p)− 1) | p ∈ Γλ parabolic}
the degree of singularity of χ. We note that for λ 6= 2, the degree of singularity is
just

sd(χ) = dimker(χ(Tλ)− 1),

whereas for λ = 2 it is

sd(χ) = max
{
dimker(χ(T2)− 1), dimker(χ(P−1)− 1)

}
.

2.4. Automorphic functions, cusp forms, and resonances. A function f : H→
V is called (Γλ, χ)-automorphic if

f(γ.z) = χ(γ)f(z)

for all z ∈ H, γ ∈ Γλ. Let C∞(Xλ;V ;χ) be the space of smooth (C∞) (Γλ, χ)-
automorphic functions which are bounded on the fundamental domain Fλ, and let
C∞

c (Xλ;V ;χ) be its subspace of functions which are compactly supported on Fλ.
We endow C∞

c (Xλ;V ;χ) with the inner product

(5) (f1, f2) :=

∫

Fλ

〈f1(z), f2(z)〉dvol(z)
(
f1, f2 ∈ C∞

c (Xλ;V ;χ)
)
,

where 〈·, ·〉 is the inner product on V , and dvol is the hyperbolic volume form. Note
that χ being unitary yields that the definitions of C∞(Xλ;V ;χ) and C∞

c (Xλ;V ;χ)
as well as the inner product (5) do not depend on the specific choice of the funda-
mental domain Fλ for Xλ. As usual, let

H := L2(Xλ;V ;χ)

denote the completion of C∞
c (Xλ;V ;χ) with respect to the inner product (·, ·)

defined in (5). The Laplace-Beltrami operator

∆ = −y2(∂2
x + ∂2

y)
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extends uniquely (Friedrich’s extension) from

{f ∈ C∞(Xλ;V ;χ) | f and ∆f are bounded on Fλ}
to a self-adjoint nonnegative definite operator on H, which we also denote by ∆ =
∆(Γλ;χ). If f ∈ H is an eigenfunction of ∆, say ∆f = µf , we branch its eigenvalue
as µ = s(1− s) and call s its spectral parameter.

This branching is also useful when considering the resolvent of ∆, hence the map

R(s) := R(s; Γλ;χ) :=
(
∆− s(1− s)

)−1
, Re s > 1.

Here, s(1−s) is understood as the operator s(1−s) idV . This map, as a function of
s, admits a meromorphic continuation to all of C. Its poles are called resonances.

For cofinite Hecke triangle groups Γλ, λ ≤ 2, the cusp (vector) forms in H are of
particular importance, i.e., those L2-eigenfunctions that decay rapidly towards any
cusp of Xλ. More precisely, let

V∞ := {v ∈ V | χ(Tλ)v = v}
be the subspace of V which consists of the vectors fixed by the stabilizer group
Stab(∞,Γλ) of the cusp ∞, and, for λ = 2, let

V−1 := {v ∈ V | χ(P−1)v = v}
be the subspace of V which consists of the vectors fixed by the stabilizer group
Stab(−1,Γλ) of the second cusp −1. Then an element f ∈ H is called a (Γλ, χ)-
cusp form if f is an eigenfunction of ∆ and

∫ λ

0

〈f(x+ iy), v〉dx = 0

for all y > 0 and all v ∈ V∞, and, for λ = 2, also
∫ 1

2

0

〈
f
([

1 1
−1 0

]
.(x + iy)

)
, v
〉
dx = 0

for all y > 0 and all v ∈ V−1. We note that these conditions are void if χ is
regular. We further note that for the trivial one-dimensional representation (C, id),
the (Γλ, id)-cusp forms are the classical Maass cusp forms.

2.5. Selberg zeta functions. Let Λ(Γλ) denote the limit set of Γλ and δ :=
dimΛ(Γλ) its Hausdorff dimension. The classical dynamical Selberg zeta function
for Γλ is defined by

Z(s) :=
∏

ℓ∈PL

∞∏

k=0

(
1− e−(s+k)ℓ

)
, Re s > δ,

where PL denotes the primitive geodesic length spectrum of Xλ with multiplicities.
The Selberg zeta function for the automorphic Laplacian with nontrivial represen-
tation is best stated in its algebraic form, taking advantage of the bijection between
periodic geodesics on Xλ and hyperbolic conjugacy classes in Γλ.

Let g ∈ Γλ. We denote its conjugacy class in Γλ by [g]. Let [Γλ]h denote the set of
all conjugacy classes of hyperbolic elements in Γλ. Further, if g is not the identity
element, then there is a maximal n(g) ∈ N such that g = hn(g) for some h ∈ Γλ.We
call g primitive if n(g) = 1. We let [Γλ]p denote the set of all conjugacy classes of
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primitive hyperbolic elements. If g is hyperbolic, then its norm N(g) is defined to
be the square of its eigenvalue with larger absolute value.

The Selberg zeta function for (Γλ, χ) is now defined by

Z(s, χ) =
∏

[g]∈[Γλ]p

∞∏

k=0

det
(
1− χ(g)N(g)−(s+k)

)
, Re s > δ.

Through analytic and number theoretic methods, it is known that Z admits a
meromorphic continuation to all of C. We will provide an alternative proof in
Section 5 below. Moreover, it is known that the resonances and spectral parameters
of Γλ are contained in the zeros of Z.

2.6. Special properties of Hecke triangle groups. The Hecke triangle groups
form a family that satisfies some special properties. They consist not only of a
mixture of lattices and non-lattices which, in a certain sense, converge to each other,
but also they mix arithmetic and non-arithmetic lattices. Among the cofinite Hecke
triangle groups Γλ only those for λ = 2 cos π

q with q ∈ {3, 4, 6} and q = ∞, thus

λ = 2, are arithmetic.

The Phillips–Sarnak conjecture [24, 25] states that for generic lattices one expects
the space of Maass cusp forms to be finite-dimensional. Hecke triangle groups
clearly commute with the element Q from (3) or, more obviously from Figure 1,
with

J =

[
−1 0
0 1

]
: z 7→ −z.

This allows us to separate the odd and the even spectrum. Recall that a Maass
cusp form f is called odd if f(J.z) = −f(z), and even if f(J.z) = f(z). It is well-
known that for any cofinite Hecke triangle groups, a Weyl law holds for the odd
Maass cusp forms. In stark contrast, the results in [15, 14] in combination with the
Phillips–Sarnak conjecture suggest that even Maass cusp forms generically should
not exist.

3. Weighted discretizations and transfer operators

3.1. Cross sections. We call a subset Ĉ of SXλ = Γλ\SH a cross section for
the geodesic flow on Xλ if and only if the intersection between any geodesic and

Ĉ is discrete in space and time, and each periodic geodesic intersects Ĉ (infinitely
often).

The Selberg zeta function only involves the length spectrum of the periodic geodesics,
and heuristically, the Laplace eigenfunctions are determined by the (statistics of
the) periodic geodesics only. Therefore, for our applications it is sufficient and even
crucial to use this relaxed notion of cross section.

A set of representatives for Ĉ is a subset C′ of SH such that the canonical quotient

map π : SH → SXλ induces a bijection C′ → Ĉ. For any v̂ ∈ SXλ let γ̂v̂ denote
the geodesic on Xλ determined by

(6) γ̂′
v̂(0) = v̂.



SYMBOLIC DYNAMICS AND THE AUTOMORPHIC LAPLACIAN 9

The first return map of a cross section Ĉ is given by

R : Ĉ → Ĉ, v̂ 7→ γ̂′
v̂(t(v̂)),

whenever the first return time

t(v̂) := min{t > 0 | γ̂′
v̂(t) ∈ Ĉ}

exists.

To characterize the set of unit tangent vectors for which the existence of the first

return time is potentially problematic, let V̂ denote the set of geodesics on Xλ

which converge in the backward or forward time direction to a cusp or a funnel of

Xλ. This means that the geodesic γ̂ belongs to V̂ if and only if γ̂(∞) or γ̂(−∞) is

“in” a cusp or a funnel. Let V̂f be the subset of geodesics on Xλ which converge

to a cusp or funnel in the forward time direction. Let T 1V̂f denote the set of unit

tangent vectors which determine the geodesics in V̂f , and let T 1Vf := π−1(T 1V̂f ).
For v ∈ SH let γv denote the geodesic on H determined by γ′

v(0) = v, and let
base(v) ∈ H denote the base point of v.

Let

bd := {γv(∞) | v ∈ T 1Vf} ⊆ R ∪ {∞}
be the “boundary part” of the geodesic boundary of H, that is the set of forward
time endpoints of the geodesics determined by the elements in T 1Vf . The set

(
P 1(R)× bd

)
∪
(
bd×P 1(R)

)

coincides with the set of endpoints (γ(∞), γ(−∞)) of the geodesics γ in π−1(V̂).
Note that if the geodesic γ̂ is contained in V̂ but not in V̂f , then the reversely

oriented geodesic is contained in V̂f .
For any subset I of R we set

Ist := I \ bd .

The cross sections Ĉ we constructed in [30] satisfy several special properties. They

are not intersected at all by the geodesics in V̂ but by each other geodesic infinitely
often both in backward and forward time direction. Therefore its first return map
is defined everywhere. They have a set of representatives C′ which decomposes into
finitely many sets C′

α, α ∈ A, each one consisting of a certain “fractal-like” set of
unit tangent vectors whose base points form a vertical geodesic arc on H and all of
who point into the same half space determined by this geodesic arc. More precisely,
each C′

α is of the form

C′
α = {v ∈ SH | Rebase(v) = xα, γv(∞) ∈ Iα,st, γv(−∞) ∈ Rst \ Iα,st},

where Iα = (xα,∞) or Iα = (−∞, xα) for some point xα ∈ R which corresponds to
a cusp or funnel endpoint of Γλ.

Via the map τ : Ĉ → R×A,

τ(v̂) := (γv(∞), α) for v = π−1(v̂) ∩C′
α,

the first return map R : Ĉ → Ĉ induces a discrete dynamical system (D,F ) on

D =
⋃

α∈A

Iα,st × {α}.
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The special structure of the sets C′
α implies that F decomposes into finitely many

submaps (bijections) of the form
(
Iα,st ∩ g−1

α,β.Iβ,st
)
× {α} → Iβ,st × {β}, (x, α) 7→ (gα,β.x, β),

where α, β ∈ A and gα,β is a specific element in Γλ. For any v ∈ C′
α there is a first

future intersection between γv(R>0) and Γ.C′, say on gα,β.C
′
β , which completely

determines these submaps.

3.2. Weights and weighted transfer operators. We use the representation
(V, χ) of Γλ to endow the discrete dynamical system (D,F ) with weights by adding
to each submap a (local) weight:
(
Iα,st ∩ g−1

α,β.Iβ,st
)
× {α} → Iβ,st × {β}, (x, α) 7→ (gα,β.x, β), wt : χ(g−1

α,β)

for all α, β ∈ A. If x ∈ (Iα,st ∩ g−1
α,β.Iβ,st)× {α}, then we say that x has the weight

wt(x) = χ(g−1
α,β).

Given such a weighted discrete dynamical system (D,F, χ), the associated weighted
transfer operator Ls with parameter s ∈ C is (formally) given by

Lsf(x) :=
∑

y∈F−1(x)

wt(y)|F ′(y)|−sf(y),

acting on an appropriate space of functions f : D → V (to be adapted to the system
and applications under consideration).

Due to the special form of our weighted systems, we can deduce a more explicit
form for the transfer operators. To that end we set

js(g, x) :=
(
| det g| · (cx+ d)−2

)s

for s ∈ C, g =
[
a b
c d

]
∈ PGL2(R) and x ∈ R. Moreover, for a function f : U → V

on some subset of U of P 1(R), we define

τs(g
−1)f(x) := τVs (g−1)f(x) := js(g, x)f(g.x),

whenever this makes sense. If f is a function defined on sets of the form (Iα,st ∩
g−1
α,β.Iβ,st)×{α}, then the action only takes place on Iα,st ∩g−1

α,β .Iβ,st, and the bit α
changes according to its change in the submap. Further, we extend this definition
to involve the representation by

αs(g) := χ(g−1)τVs (g),

hence
αs(g)f(x) = js(g

−1, x)χ(g−1)
(
f(g−1.x)

)
.

Then the (formal) transfer operator Ls becomes

Lsf =
∑

α,β∈A

1F (Dα,β) · αs(gα,β)
(
f · 1Dα,β

)
,

where 1E denotes the characteristic function of the set E, and Dα,β := (Iα,st ∩
g−1
α,β.Iβ,st)× {α}.
If Γλ = PSL2(Z) and (V, χ) is the representation that is induced from the trivial one-
dimensional representation of some finite-index subgroup Λ of PSL2(Z), then our
weights reproduce the usage of (V, χ) in [6, 7, 8]. There this specific representation
was used to provide a clean bookkeeping tool of the cosets Λ\PSL2(Z) to push
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the discretizations, transfer operators and period functions from PSL2(Z) to Λ.
Our usage as weights directly in the submaps now allows us to accommodate more
general representations.

4. The slow systems and automorphic forms

In the following we recall the cross sections from [30] and state the associated
weighted discrete dynamical systems. Each of the submaps

Ist × {α} → g.Ist × {β}, (x, α) 7→ (g.x, β), wt : χ(g−1)

of these systems can be continued to an analytic map on the “analytic hull” of Ist,
that is the minimal interval I in R such that I\bd coincides with Ist. The associated
weighted transfer operators are here considered to act on functions defined on the
analytic hulls.

If Γλ is cofinite and (V, χ) is the trivial one-dimensional representation of Γλ, then
we proved in [21, 29, 27] that the highly regular eigenfunctions with eigenvalue 1 of
the transfer operators are isomorphic to the Maass cusp forms. We expect this to
hold for more general automorphic cusp forms. Moreover, for the non-cofinite Hecke
triangle groups, we expect an intimate relation between the transfer operators and
residues at resonances.

We divide our considerations into three classes. The first class consists of all cofinite
Hecke triangle groups with parameter λ < 2. These are, in terms of complexity, the
easiest ones. The cross sections for all these lattices consist of only one component,
and they are almost identical. The only difference derives from the different sets of
cuspidal points Γλ.∞. The arising discrete dynamical systems are easy stated uni-
formly, even though they decompose into a different number of submaps, depending
on the order of the elliptic point.

The second class consists of the Theta group Γ2. The presence of two non-equivalent
cusps and an elliptic point yields that the set of representatives for the cross section
decomposes into three components. One immediately sees that only two compo-
nents would be sufficient for a cross section. However, all three components are
needed for a clean statement of the period functions (i.e., the eigenfunctions of the
transfer operator) for Maass cusp forms and in particular their regularity condi-
tions.

After surveying this result and its existing and expected generalizations to more
general automorphic cusp forms, we investigate the reduced cross section for Γ2,
the relation between the arising transfer operators from the two cross sections,
and provide the characterization of Maass cusp forms in this second system. More
importantly, we will see that this reduced cross section is very similar to the cross
sections for the non-cofinite Hecke triangle groups, our third class. As we will
see, this similarity allows us to prove a convergence of transfer operators along a
sequence of Hecke triangle groups.

Throughout we omit some dependencies from the notation, and we will use (D,F )
to denote any discrete dynamical system.

4.1. Hecke triangle groups with parameter λ < 2. Let Γ = Γλ be a cofinite
Hecke triangle group with parameter λ = λ(q) = 2 cos π

q , q ∈ N≥3. The set of
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representatives C′ in [30] for the cross section Ĉ of the geodesic flow on Γ\H is

C′ := {v ∈ SH | Rebase(v) = 0, γv(−∞) ∈ (−∞, 0)st, γv(∞) ∈ (0,∞)st}.
For k ∈ Z let

gk :=
(
(TS)kS

)−1
.

The induced discrete dynamical system (D,F ) is defined on D = (0,∞)st and
decomposes, as it can be read off from Figure 2, into the q − 1 weighted submaps

C ′S.C ′ g−1
1 .C ′

g−1
q−1.C

′ g−1
2 .C ′

. . .

0 1
λ

λ

Figure 2. Cross section and future intersections for Γλ, λ < 2.

(g−1
k .0, g−1

k .∞)st → (0,∞)st, x 7→ gk.x, wt : χ(g−1
k ),

where k = 1, . . . , q − 1. The associated transfer operator Ls,χ acts on Fct(R>0;V )
via

Ls,χ =

q−1∑

k=1

αs(gk).

Theorem 4.1 ([21]). Let (V, χ) = (C, id) be the trivial one-dimensional repre-
sentation of Γλ and let s ∈ C, Re s ∈ (0, 1). Then the space of Maass cusp
forms for Γλ with spectral parameter s is isomorphic to the space of eigenfunctions
f ∈ Cω(R>0;C) of Ls,χ with eigenvalue 1 for which the map

(7)

{
f on R>0

−τs(S)f on R<0

extends smoothly to all of R. If u is a Maass cusp forms with spectral parameter s,
then the associated eigenfunction f ∈ Cω(R>0;C) is given by

f(t) =

∫ i∞

0

[u,R(t, ·)s],

where the integration is along any path in H from 0 to i∞, and R(t, z) := Im
(

1
t−z

)
,

and

[u, v] =
∂u

∂z
· vdz + u · ∂v

∂z
dz.

In number theoretical terms, the space of eigenfunctions of Ls,χ in Theorem 4.1
constitutes period functions for the Maass cusp forms. Let u be a Maass cusp form
with corresponding period function f . The condition that f is a 1-eigenfunction of
Ls,χ corresponds to u being an eigenfunction of the Laplace–Beltrami operator, and
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the regularity requirement f ∈ Cω(R>0;C) corresponds to u being real-analytic.
To model the property that u is rapidly decaying towards the cusp on the side
of period functions, we first need to extend the period functions to almost all of
R (actually of P 1(R)). In Figure 2 we see that S.C′ is “opposite” to C′ in the
sense that S.C′∪C′ is disjoint and almost coincides with the complete unit tangent
spaces at iR>0. Further, S.C

′ is conversely oriented to C′. Therefore, f is extended
by −τs(S)f in (7). Now the cusp is represented by 0, for which reason we need
to request that (7) is smooth at 0. Since ∞ represents the same cusp, there is no
additional requirement at ∞.

The proof of Theorem 4.1, for which we refer to [21] or [27], makes crucial use of the
characterization of Maass cusp forms in parabolic cohomology by Bruggeman, Lewis
and Zagier [3]. Such a characterization is not (yet) available for (Γλ, χ)-automorphic
cusp forms with nontrivial representation. However, for representations of PSL2(Z)
that are induced from the trivial one-dimensional representation of a finite index
subgroup, Deitmar and Hilgert [8] proved an analogue of Theorem 4.1 using hyper-
function theory. We expect that results analogous to Theorem 4.1 are true in much
more generality.

Conjecture 4.2. Let (V, χ) be any unitary finite-dimensional representation of Γλ,
and Re s ∈ (0, 1). Then there is a bijection between the (Γλ, χ)-automorphic cusp
forms with spectral parameter s and the 1-eigenfunctions of the transfer operator
Ls,χ of the same regularity as in Theorem 4.1.

4.2. The Theta group. Let Γ := Γ2 be the Theta group.

4.2.1. The original system. The cross section C′ in [30] for Γ is given by

C′ := C′
a ∪C′

b ∪C′
c,

where

C′
a := {v ∈ SH | Rebase(v) = −1, γv(−∞) ∈ (−∞,−1)st, γv(∞) ∈ (−1,∞)st},

C′
b := {v ∈ SH | Rebase(v) = 1, γv(−∞) ∈ (1,∞)st, γv(∞) ∈ (−∞, 1)st}, and

C′
c := {v ∈ SH | Rebase(v) = 0, γv(−∞) ∈ (−∞, 0)st, γv(∞) ∈ (0,∞)st}.

Let

k1 := T, k2 := T−1S =

[
2 1
−1 0

]
, k3 := TS =

[
2 −1
1 0

]
, and k4 := S.

From Figure 3 it can be read off that the induced discrete dynamical system (D,F )
is defined on

D :=
(
(−1,∞)st × {a}

)
∪
(
(−∞, 1)st × {b}

)
∪
(
(0,∞)st × {c}

)

and decomposes into the submaps

(−1, 0)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (k2.x, a), wt : χ(k−1
2 ),

(0,∞)st × {a} → (0,∞)st × {c}, (x, a) 7→ (x, c), wt : χ(1),

(−∞, 0)st × {b} → (0,∞)st × {c}, (x, b) 7→ (k4.x, c), wt : χ(k−1
4 ),

(0, 1)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (k3.x, b), wt : χ(k−1
3 ),

(0, 1)st × {c} → (−∞, 1)st × {b}, (x, c) 7→ (k3.x, b), wt : χ(k−1
3 ),
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C ′
a k4.C

′
c C ′

c C ′
b k1.C

′
a

k−1
2 .C ′

a k−1
3 .C ′

b

−1 0 1

Figure 3. Cross section and future intersections for Γ2.

(1,∞)st × {c} → (−1,∞)st × {a}, (x, c) 7→ (k−1
1 .x, a), wt : χ(k−1

1 ).

For each f ∈ Fct(D;V ) we let

fa := f · 1(−1,∞)st×{a}, fb := f · 1(−∞,1)st×{b} and fc := f · 1(0,∞)st×{c}.

We identify f with the vector 

fa
fb
fc


 ,

and then (−1,∞)st × {a} with (−1,∞)st, (−∞, 1)st × {b} with (−∞, 1)st, and
(0,∞)st×{c} with (0,∞)st. The associated transfer operator Ls,χ with parameter
s ∈ C and weight χ is then represented by

Ls,χ =



αs(k2) 0 αs(k

−1
1 )

0 αs(k3) αs(k3)
αs(1) αs(k4) 0


 .

The following theorem is a special case of the very general results in [27].

Theorem 4.3. Let (V, χ) = (C, id) be the trivial one-dimensional representation
of Γ, and let s ∈ C, 1 > Re s > 0. Then the Maass cusp forms u for Γ with spectral
parameter s are isomorphic to the function vectors f = (fa, fb, fc)

⊤ such that

fa ∈ Cω
(
(−1,∞);C

)
, fb ∈ Cω

(
(−∞, 1);C

)
, and fc ∈ Cω

(
(0,∞);C

)
,

and f = Ls,χf , and the map
{
fc on (0,∞)

−τs(S)fc on (−∞, 0)

extends smoothly to R, and the map
{
fa on (−1,∞)

−τs(T−1)fb on (−∞,−1)
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extends smoothly to P 1(R). The isomorphism from u to f is given by (see Theo-
rem 4.1 for notation)

fa(t) =

∫ i∞

−1

[u,R(t, ·)s], fb(t) = −
∫ i∞

1

[u,R(t, ·)s],

and

fc(t) =

∫ i∞

0

[u,R(t, ·)s].

As in Section 4.1 we again expect that Theorem 4.3 can be generalized to arbitrary
(Γ, χ)-automorphic cusp forms.

4.2.2. The reduced system. Figure 3 shows that already π(C′
a ∪ C′

b) constitutes a
cross section. The induced discrete dynamical system on

D :=
(
(−1,∞)st × {a}

)
∪
(
(−∞, 1)st × {b}

)

is given by the submaps

(−1, 0)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (k2.x, a), wt : χ(k−1
2 )

(0, 1)st × {a} → (−∞, 1)st × {b}, (x, a) 7→ (k3.x, b), wt : χ(k−1
3 )

(1,∞)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (k−1
1 .x, a), wt : χ(k1)

(−∞,−1)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (k1.x, b), wt : χ(k−1
1 )

(−1, 0)st × {b} → (−1,∞)st × {a}, (x, b) 7→ (k2.x, a), wt : χ(k−1
2 )

(0, 1)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (k3.x, b), wt : χ(k−1
3 ).

If we represent f ∈ Fct(D;V ) by the function vector
(
fa
fb

)

then the associated transfer operator is represented by

L(r)s,χ =

(
αs(k

−1
1 ) + αs(k2) αs(k2)
αs(k3) αs(k1) + αs(k3)

)
.

Even though the transfer operator L(r)s,χ derives from a smaller cross section than
Ls,χ, its highly regular 1-eigenfunction vectors characterize the Maass cusp forms
for Γ in the case (V, χ) = (C, id) as we will show in the following.

Lemma 4.4. The map
(
fa
fb

)
←→



fa
fb
fc




is an isomorphism between the 1-eigenfunction vectors of L(r)s,χ and the 1-eigenfunction
vectors of Ls,χ.

Proof. If f = (fa, fb, fc)
⊤ is a 1-eigenfunction of Ls,χ, then

fc = αs(1)fa + αs(k4)fb.

�
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The combination of Theorem 4.3 with Lemma 4.4 yields the following Corollary.

Corollary 4.5. Let (V, χ) = (C, id) and Re s ∈ (0, 1). Then the Maass cusp
forms for Γ with spectral parameter s are isomorphic to the 1-eigenfunction vectors

f = (fa, fb)
⊤ of L(r)s,χ which satisfy

fa ∈ Cω
(
(−1,∞);C

)
and fb ∈ Cω

(
(−∞, 1);C

)
,

and for which the map
{
fa + τs(S)fb on (0,∞)

−τs(S)fa − fb on (−∞, 0)

extends smoothly to R, and the map
{
fa on (−1,∞)

−τs(T−1)fb on (−∞,−1)

extends smoothly to P 1(R).

The isomorphism in Corollary 4.5 is given as in Theorem 4.3.

4.3. Non-cofinite Hecke triangle groups. Let Γ be a non-cofinite Hecke triangle
group, thus Γ := Γλ for some λ > 2. The set of representatives C′ for the cross

section Ĉ from [31] decomposes into two components

C′ := C′
a ∪ C′

b

which are

C′
a := {v ∈ SH | Rebase(v) = −1, γv(−∞) ∈ Rst, γv(∞) ∈ (−1,∞)st}, and

C′
b := {v ∈ SH | Rebase(v) = 1, γv(−∞) ∈ Rst, γv(∞) ∈ (−∞, 1)st}.

The induced discrete dynamical system (D,F ) can be read off from Figure 4, where

a−1
1 .C ′

b
a1.C

′
aC ′

a C ′
b

a−1
2 .C ′

a a−1
3 .C ′

b

− 1
λ−1

1− λ −1 0 1 λ− 11
λ−1

Figure 4. Cross section and future intersections for Γλ, λ > 2.

a1 := T, a2 := T−1S =

[
λ 1
−1 0

]
and a3 := TS =

[
λ −1
1 0

]
.

Thus, it is defined on

D :=
(
(−1,∞)st × {a}

)
∪
(
(−∞, 1)st × {b}

)

and given by the weighted submaps

(−1, 0)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (a2.x, a), wt : χ(a−1
2 ),
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(0, 1)st × {a} → (−∞, 1)st × {b}, (x, a) 7→ (a3.x, b), wt : χ(a−1
3 ),

(−1 + λ,∞)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (a−1
1 .x, a), wt : χ(a1),

(−∞, 1− λ)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (a1.x, b), wt : χ(a−1
1 ),

(−1, 0)st × {b} → (−1,∞)st × {a}, (x, b) 7→ (a2.x, a), wt : χ(a−1
2 ),

(0, 1)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (a3.x, b), wt : χ(a−1
3 ).

For f ∈ Fct(D;V ) we set

f1 := f · 1(−1,∞)st×{a} and f2 := f · 1(−∞,1)st×{b},

and identify f with (
f1
f2

)

as well as (−1,∞)st × {a} with (−1,∞)st, and (−∞, 1)st × {b} with (−∞, 1)st.
The associated transfer operator Ls,χ with parameter s ∈ C and weight χ is then
represented by

Ls,χ =

(
αs(a2) + αs(a

−1
1 ) α2(a2)

αs(a3) αs(a1) + αs(a3)

)
.

In view of Theorems 4.1 and 4.3 we expect the following significance of the 1-
eigenfunction vectors of Ls,χ. This conjecture is also supported by Theorem 5.6
below.

Conjecture 4.6. The (sufficiently regular) 1-eigenfunction vectors of Ls,χ deter-
mine the residues at the resonance s.

4.4. Convergence along sequences of Hecke triangle groups. The Phillips–
Sarnak conjecture on the (non-)existence of Maass cusp forms is motivated by
considerations using deformation theory along families of Fuchsian lattices. Also
the results in [15, 14] are based on such a deformation theory. With this in mind, it
is natural to ask how transfer operators behave along families of Fuchsian groups.

We recall from Section 4.3 that the elements in the discrete dynamical system for
Γλ with λ > 2 are

a1(λ) =

[
1 λ
0 1

]
, a2(λ) =

[
λ 1
−1 0

]
, a3(λ) =

[
λ −1
1 0

]

and the transfer operator is given by

L(λ)s,χ =

(
αs(a2(λ)) + αs(a1(λ)

−1) αs(a2(λ))
αs(a3(λ)) αs(a1(λ)) + αs(a3(λ))

)
.

In Section 4.2.2 we see that for λ = 2 we have a1(2) = k1, a2(2) = k2, a3(2) = k3
and that the transfer operator for the reduced system for the Theta group Γ2 is

just L(2)s,χ.

Theorem 4.7. We have the convergence

L(λ)s,χ → L(2)s,χ as λց 2

in operator norm for any choice of norm on Fct((−1,∞);V )× Fct((−∞, 1);V ).
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We remark that Theorem 4.7 is very sensitive to the choice of the cross sections and
their sets of representatives. Similar results hold for the transfer operators along
the family of cofinite Hecke triangle groups if one uses a different cross section for
the Theta group. The details will be discussed in the forthcoming Master thesis of
A. Adam (Göttingen).

5. The fast systems and the Selberg zeta functions

In this section we discuss how to represent the Selberg zeta function Z(s, χ) for Γλ

(with the representation (V, χ)) as a Fredholm determinant of a family of transfer
operators arising from a discretization of the geodesic flow on Xλ.

Each of the slow discrete dynamical systems in Section 4 is expanding but none
uniformly. This has the consequence that their associated transfer operators are
not nuclear (on no nonzero Banach space) and hence do not admit Fredholm deter-
minants. The reason for this non-uniformity in the expansion rate is the presence
of submaps of the form

Jα × {α} → Iα × {α}, (x, a) 7→ (g.x, a),

where Jα is a subset of Iα and g is parabolic or elliptic. To overcome this problem
we induce the slow discrete dynamical systems on these submaps. The outcome
are discrete dynamical systems which branch into infinitely, but countably many
submaps that are uniformly expanding. We call these systems fast.

The definition of transfer operator from Section 3.2 clearly carries over to fast
discrete dynamical systems. But now the associated transfer operators involve
infinitely many terms which makes necessary a discussion of their convergence and
domains of definition. We show below that they constitute nuclear operators of
order zero on direct sums of Banach spaces (with supremum norm) of the form

B(C;V ) := {f : C → V continuous, f |C holomorphic},

where C is an open bounded disk in P 1(C). The action τs obviously extends to
B(C;V ). We continue to denote each arising discrete dynamical system by (D,F ).

5.1. Hecke triangle groups with parameter λ < 2. Let Γ := Γλ be a cofinite
Hecke triangle group with parameter λ < 2. Recall the elements gk ∈ Γ, k =
1, . . . , q− 1, from Section 4.1. The fast discrete dynamical system (D,F ) is defined
on D = (0,∞)st and given by the weighted submaps

(
g−1
k .0, g−1

k .∞
)
st
→ (0,∞)st, x 7→ gk.x, wt : χ(g−1

k ),

for k = 2, . . . , q − 2, and, for n ∈ N,

(
g−n
1 .0, g

−(n+1)
1 .0

)
st
→ (0, λ)st, x 7→ gn1 .x, wt : χ(g−n

1 ),

(
g
−(n+1)
q−1 .∞, g−n

q−1.∞
)
st
→
(
1

λ
,∞
)

st

, x 7→ gnq−1.x, wt : χ(g−n
q−1).

We identify f ∈ Fct(D;C) with the function vector f = (f1, fr, fq−1)
⊤, where

f1 := f · 1(λ,∞)st , fr := f · 1(1/λ,λ)st , and fq−1 := f · 1(0,1/λ)st .
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Then the associated transfer operator with parameter s ∈ C is formally given by
the matrix

Ls,χ =




0
q−2∑
k=2

αs(gk)
∑
n∈N

αs(g
n
q−1)

∑
n∈N

αs(g
n
1 )

q−2∑
k=2

αs(gk)
∑
n∈N

αs(g
n
q−1)

∑
n∈N

αs(g
n
1 )

q−2∑
k=2

αs(gk) 0




.

To find a domain of definition for Ls,χ on which it becomes a nuclear operator, we
need to work with neighborhoods of∞ in P 1(C). To avoid dealing with changes of
charts we conjugate the group Γ, the discretization, the discrete dynamical system
and Ls,χ with

T =
1√
2

[
1 −1
1 1

]
.

Then Λ := T ΓT −1 is the conjugate lattice, the conjugate discrete dynamical system
is (E,G) defined on

E := (−1, 1)st
and given by the submaps from above, where each gk is changed to

hk := T gkT −1

and the weight is determined by the representation

η : Λ→ U(V ), η(h) := χ(T −1hT ).
Let

βs(h) := η(h−1)τs(h)

and

E1 := T .(λ,∞) =

(
λ− 1

λ+ 1
, 1

)
,

Er := T .
(
1

λ
, λ

)
=

(
−λ− 1

λ+ 1
,
λ− 1

λ+ 1

)
,

Eq−1 := T .
(
0,

1

λ

)
=

(
−1,−λ− 1

λ+ 1

)
.

The conjugate transfer operator

L̃s,η =




0
q−2∑
k=2

βs(hk)
∑
n∈N

βs(h
n
q−1)

∑
n∈N

βs(h
n
1 )

q−2∑
k=2

βs(hk)
∑
n∈N

βs(h
n
q−1)

∑
n∈N

βs(h
n
1 )

q−2∑
k=2

βs(hk) 0




is formally acting on the function vectors

f =




f1 : E1 → V
fr : Er → V

fq−1 : Eq−1 → V


 .
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As shown in [21, Proposition 4.2] there exist open bounded disks E1, Er, Eq−1 ⊆ C

such that

(i) Ej ⊆ Ej for j ∈ {1, r, q − 1},
(ii) J.Er = Er and J.E1 = Eq−1, where J = T QT −1 =

[
−1 0
0 1

]
,

(iii) for k = 2, . . . , q − 2 we have h−1
k .E1 ⊆ Er, h−1

k .Er ⊆ Er and h−1
k .Eq−1 ⊆ Er,

(iv) for n ∈ N we have h−n
1 .Er ⊆ E1 and h−n

1 .Eq−1 ⊆ E1,
(v) for n ∈ N we have h−n

q−1.E1 ⊆ Eq−1 and h−n
q−1.Er ⊆ Eq−1,

(vi) for all z ∈ E1 we have Re z > −1,
(vii) for all z ∈ Eq−1 we have 1 > Re z, and

(viii) for all z ∈ Er we have 1 > Re z > −1.

Let

B(E ;V ) := B(E1;V )⊕B(Er;V )⊕B(Eq−1;V ).

Theorem 5.1. (i) For Re s > 1
2 , the transfer operator L̃s,η is an operator on the

Banach space B(E ;V ) and as such nuclear of order 0.

(ii) The map s 7→ L̃s,η extends meromorphically to all of C. We also use L̃s,η to
denote this extension. The poles are all simple and contained in 1

2 (1 − N0).

For each pole s0, there is a neighborhood U of s0 such that L̃s,η is of the form

L̃s,η =
1

s− s0
As + Bs

where the operators As and Bs are holomorphic on U , and As is of rank at
most 4 sd(η).

Proof. The proof of (i) is an easy adaption of the corresponding statement in [21]
for the trivial one-dimensional representation. For (ii) we need to show that the
maps

Ψ1 :

{
{Re s > 1

2} → {operators B(Eq−1;V )→ B(E1;V )}
s 7→

∑
n∈N

βs(h
n
q−1)

Ψ2 :

{
{Re s > 1

2} → {operators B(Eq−1;V )→ B(Er;V )}
s 7→ ∑

n∈N

βs(h
n
q−1)

Ψ3 :

{ {Re s > 1
2} → {operators B(E1;V )→ B(Er;V )}

s 7→ ∑
n∈N

βs(h
n
1 )

Ψ4 :

{
{Re s > 1

2} → {operators B(E1;V )→ B(Eq−1;V )}
s 7→ ∑

n∈N

βs(h
n
1 )

extend to meromorphic functions on C with values in nuclear operators of order 0
and with poles as claimed. We provide these proofs for the latter two maps. The
proofs for the former two maps are analogous. We start with a diagonalization.

Since η(h1) is a unitary operator on V , there exists an orthonormal basis of V with
respect to which η(h1) is represented by a (unitary) diagonal matrix, say

diag
(
e2πia1 , . . . , e2πiad

)
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with a1, . . . , ad ∈ R and d = dimV . The degree of singularity sd(η) is then the
number of integral aj in this representation. We use the same basis of V to represent
any f ∈ B(Ek;V ) (k ∈ {1, r, q − 1}) as a vector of component functions



f1
...
fd


 : Ek → Cd.

In these coordinates, the operator on the right hand side in the definition of Ψ3

and Ψ4 becomes

diag

(
∑

n∈N

e2πina1τs(h
n
1 ), . . . ,

∑

n∈N

e2πinadτs(h
n
1 )

)
.

Note that here τs = τCs . Let

Ls :=
∑

n∈N

e2πinaτs(h
n
1 )

with a ∈ R. Then it suffices to show that for ℓ ∈ {r, q − 1} and a ∈ R, the maps
{
{Re s > 1

2} → {operators B(E1;C)→ B(Eℓ;C)}
s 7→ Ls

admit entire extensions if a ∈ R \ Z, and, if a ∈ Z, meromorphic extensions to all
of C with simple poles all of which are contained in 1

2 (1− N0).

Note that 1 ∈ E1 is the fixed point of the parabolic element h−1
1 . For M ∈ N0

let PM : B(E1;C) → B(E1;C) be the operator which subtracts from a function its
Taylor polynomial of degree M centered at 1, thus

PM (g)(z) := gM (z) := g(z)−
M∑

k=0

g(k)(1)

k!
(z − 1)k.

We use the operator PM to write Ls as a sum of two operators:

(8) Ls = Ls ◦ (1 − PM ) + Ls ◦ PM .

We start by investigating the first term on the right hand side of (8). For n ∈ N

we have

hn
1 =

1

2

[
2 + nλ −nλ
nλ 2− nλ

]

and hence

h−n
1 .z = 1− 2

λ

(
n+

2

λ(1− z)

)−1

.

Let Re s > 1
2 , g ∈ B(E1;C) and z ∈ Er ∪ Eq−1. Then

(
Ls ◦ (1− PM )

)
g(z) = Ls(g − gM )(z) =

M∑

k=0

g(k)(1)

k!
Ls

(
(z − 1)k

)

=
M∑

k=0

(−1)k g
(k)(1)

k!

22s+k

λ2s+k(1 − z)2s

∑

n∈N

e2πina
(
n+

2

λ(1− z)

)−2s−k

.
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We recall the Lerch zeta function

ζ(s, a, w) :=

∞∑

n=0

e2πina

(n+ w)s
,

defined for Re s > 1, a ∈ R and w ∈ C \ (−N0). For a ∈ Z, this is just the Hurwitz
zeta function. A classical Riemann method shows that the Lerch zeta function
extends meromorphically to all of C in the s-variable. For that one considers the
contour integral

I(s, a, w) :=
1

2πi

∫

C

zs−1ewz

1− ez+2πia
dz,

where C is a path which begins at −∞, goes once around the origin in positive
direction, and returns to −∞ such that it does not enclose any point in 2πi(−a+Z)
other than (possibly) 0. Then I(s, a, w) is entire in s, and

ζ(s, a, w) = Γ(s− 1)I(s, a, w).

Hence, for a ∈ Z, the map s 7→ ζ(s, a, w) extends to a meromorphic function on
C with only a simple pole at s = 1. For a /∈ Z, the extension of s 7→ ζ(s, a, w) is
entire.

The previous calculation now shows that

Ls(g − gM )(z) =

M∑

k=0

(−1)k g
(k)(1)

k!

22s+ke2πia

λ2s+k(1− z)2s
ζ

(
2s+ k, a, 1 +

2

λ(1− z)

)
.

From 1 > Re z it follows that Re
(
1 + 2

λ(1−z)

)
> 0. Thus, the properties of the

Lerch zeta function imply that for a ∈ Z the map Ls(g− gM )(z) extends meromor-
phically in the s-variable to all of C with simple poles at s = (1−k)/2, k = 0, . . . ,M .
For a /∈ Z, the map Ls(g− gM )(z) extends to an entire function. In both cases, the
extension of Ls ◦ (1− PM ) is nuclear of order 0 as a finite rank operator.

For the investigation of the second term of (8) we fix t > 0 such that the ball Bt(1)
in C with radius t around 1 is contained in E1. Let g ∈ B(E1;C) and M ∈ N. There
exists C ∈ R such that for all z ∈ Bt(1),

|gM (z)| ≤ C|z − 1|M+1.

Further, since h1 is parabolic with fixed point 1, we have

lim
n→∞

h−n
1 .z = 1

for every z ∈ C. Thus, for each z ∈ Er ∪ Eq−1 and for some n0 = n0(z) ∈ N, we
have

∣∣(Ls ◦ PM

)
g(z)

∣∣ =
∣∣∣∣∣
∑

n∈N

e2πina22s

(nλ(1 − z) + 2)2s
gM (h−n

1 .z)

∣∣∣∣∣

≤

∣∣∣∣∣∣

∑

n≤n0

e2πina22s

(nλ(1 − z) + 2)2s
gM (h−n

1 .z)

∣∣∣∣∣∣

+
∑

n>n0

22Re seπ| Im s|

|nλ(1 − z) + 2|2Re s+M+1
.
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Hence, (Ls ◦ PM )g(z) converges for Re s > −M
2 . The operator Ls ◦ PM is nuclear

of order 0 since PM is bounded.

Obviously, these arguments apply to each M ∈ N, and hence Ls extends meromor-
phically to C with simple poles at s = (1− k)/2, k ∈ N0, for a ∈ Z, and it extends
holomorphically to C for a /∈ Z. This proves (ii). �

An immediate consequence of Theorem 5.1 is that the Fredholm determinant

det(1 − L̃s,η)
exists and defines a holomorphic map on Re s > 1

2 . For Re s sufficiently large (here,
Re s > 1), it is given by

det(1 − L̃s,η) = exp
(
−
∑

n∈N

1

n
Tr L̃s,η

)
.

To show that it equals the Selberg zeta function Z(s, η) we need the following
lemma.

Lemma 5.2. Let h ∈ Λ and let C be an open bounded subset of C such that h.C ⊆ C
and such that the action of h on C has a single fixed point. Consider the operator
τs(h

−1) = τVs (h−1) as acting on the Banach space B(C;V ). Then

Tr(βs(h
−1)) =

N(h)−s

1−N(h)−1
tr η(h).

Proof. For τCs (h
−1) : B(C;C)→ B(C;C) we have (see [33])

Tr τCs (h
−1) =

N(h)−s

1−N(h)−1
.

Since η(h) is a unitary operator on V , we find a basis of V with respect to which
η(h) is represented by a diagonal matrix, say by

diag(a1, . . . , ad)

with a1, . . . , ad ∈ C, d = dimV . We use the same basis of V to define an isomor-
phism (of Banach spaces)

B(C;V ) ∼=
d⊕

j=1

B(C;C).

Under this isomorphism, the operator τVs (h) acts diagonally, i.e.

τVs (h−1) ∼=
d⊕

j=1

τCs (h
−1).

Hence

η(h)τVs (h−1) ∼=
d⊕

j=1

ajτ
C

s (h
−1)

and

Tr η(h)τVs (h−1) =
d∑

j=1

aj Tr τ
C

s (h
−1) =

N(h)−s

1−N(h)−1

d∑

j=1

aj =
N(h)−s

1−N(h)−1
tr η(h).

�
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Theorem 5.3. (i) For Re s > 1 we have Z(s, η) = det(1− L̃s,η).
(ii) The Fredholm determinant det(1 − L̃s,η) extends to a meromorphic function

on C whose poles are contained in 1
2 (1 − N0). The order of a pole is at most

4 sd(η).

Proof. We start with the proof of (i). Let n ∈ N and suppose that h = s0 . . . sn−1

is a word over the alphabet

(9) {hm
1 , h2, . . . , hq−2, h

m
q−1 | m ∈ N}.

We call h reduced if it does not contain a subword of the form hm1

1 hm2

1 or hm1

q−1h
m2

q−1,
m1,m2 ∈ N. We say that h is regular if both h and hh are reduced. The length of
h is n.

Since the semigroup H in Λ generated by (9) is free (see [21]), each element h ∈ H
corresponds to at most one word in this alphabet. For this reason, we will identify
the elements in H with their corresponding words.

Let Pn denote the set of regular words of length n. An immediate consequence of
[21, Proposition 4.1] is the identity

Tr L̃s,η =
∑

h∈Pn

Trβs(h).

Further, let g ∈ Λ be hyperbolic. By [21], the conjugacy class [g] contains at least
one regular representative h ∈ H . Let h0 be a primitive hyperbolic element such
that hn

0 = h for some n ∈ N. Then h0 ∈ H . The word length w(h) of h and the
word length w(h0) of h0 are independent of the chosen representatives. We define
w(g) := w(h) to be the word length of g, and p(g) := w(h0) the primitive word
length of g. Then there are exactly p(g) representatives of [g] in Pw(g). Note that
n(g) = w(g)/p(g).

For Re s > 1 we now have

lnZ(s) =
∑

[g]∈[Γ]p

∞∑

k=0

ln
(
det
(
1− η(g)N(g)−(s+k)

))

= −
∑

[g]∈[Γ]p

∞∑

ℓ=1

1

ℓ

N(gℓ)−s

1−N(gℓ)−1
tr
(
η(gℓ)

)

= −
∑

[g]∈[Γ]h

1

n(g)

N(g)−s

1−N(g)−1
tr η(g)

= −
∑

[g]∈[Γ]h

p(g)

w(g)

N(g)−s

1−N(g)−1
tr η(g)

= −
∞∑

w=1

1

w

∑

h−1∈Pw

N(h)−s

1−N(h)−1
tr η(h)

= −
∞∑

w=1

1

w

∑

h∈Pw

Tr βs(h)

= −
∞∑

w=1

1

w
Tr L̃ws,η
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= ln
(
det(1− L̃s,η)

)
.

This proves (i). Statement (ii) follows now immediately from Theorem 5.1(ii). �

Corollary 5.4. For regular η, the map s 7→ L̃s,η and the Fredholm determinant

det(1− L̃s,η) extend to entire functions.

For PSL2(Z) it is known (see [5, 16]) that the 1-eigenfunctions of the “slow” trans-
fer operators from Section 4.1 and the “fast” transfer operators developed in this
section are isomorphic. Their proof takes advantage of special properties of the
modular group. However, by geometric consideration we expect that the same
relation holds for general Hecke triangle groups.

5.2. The Theta group. Let Γ := Γ2 be the Theta group. Recall the elements
k1, k2, k3 ∈ Γ from Section 4.2. The first step from the original slow system for Γ in
Section 4.2.1 towards a fast system has already been made in Section 4.2.2, where
we eliminated the acting elliptic element S and the action by 1 ∈ Γ. The additional
induction on the parabolic elements gives rise to the fast discrete dynamical system
(D,F ) which is defined on

D :=
(
(−1,∞)st × {a}

)
∪
(
(−∞, 1)st × {b}

)

=
(
(0, 1)st × {a}

)
∪
(
(−1, 0)st × {a}

)
∪
(
(1,∞)st × {a}

)

∪
(
(−1, 0)st × {b}

)
∪
(
(−∞,−1)st × {b}

)
∪
(
(0, 1)st × {b}

)

and determined by the weighted submaps

(0, 1)st × {a} → (−∞, 1)st × {b}, (x, a) 7→ (k3.x, b), wt : χ(k−1
3 )

(−1, 0)st × {b} → (−1,∞)st × {a}, (x, b) 7→ (k2.x, a), wt : χ(k−1
2 )

and for n ∈ N
(
k
−(n+1)
2 .∞, k−n

2 .∞
)
st
× {a} → (0,∞)st × {a}, (x, a) 7→ (kn2 .x, a), wt : χ(k−n

2 )
(
kn1 .(−1), kn+1

1 .(−1)
)
st
× {a} → (−1, 1)st × {a}, (x, a) 7→ (k−n

1 .x, a), wt : χ(kn1 )(
k
−(n+1)
1 .1, k−n

1 .1
)
st
× {b} → (−1, 1)st × {b}, (x, b) 7→ (kn1 .x, b), wt : χ(k−n

1 )
(
k−n
3 .∞, k

−(n+1)
3 .∞

)
st
× {b} → (−∞, 0)st × {b}, (x, b) 7→ (kn3 .x, b), wt : χ(k−n

3 ).

Note that ⋃

n∈N

(
k
−(n+1)
2 .∞, k−n

2 .∞
)
st
× {a} = (−1, 0)st × {a},

and analogously for the other infinite branches. As before, we identify f ∈ Fct(D;V )
with the function vector (f1, . . . , f6)

⊤, where

f1 := f · 1(−1,0)st×{a}

f2 := f · 1(0,1)st×{a}

f3 := f · 1(1,∞)st×{a}

f4 := f · 1(−∞,−1)st×{b}

f5 := f · 1(−1,0)st×{b}

f6 := f · 1(0,1)st×{b},
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and we may omit the ×{a} and ×{b}. Then the associated transfer operator is
(formally) represented by the matrix

Ls,χ =




∑
n∈N

αs(k
−n
1 ) αs(k2)

∑
n∈N

αs(k
n
2 )

∑
n∈N

αs(k
−n
1 ) αs(k2)

∑
n∈N

αs(k
n
2 ) αs(k2)

αs(k3)
∑
n∈N

αs(k
n
3 )

αs(k3)
∑
n∈N

αs(k
n
1 )

∑
n∈N

αs(k
n
3 )

αs(k3)
∑
n∈N

αs(k
n
1 )




.

For a, b ∈ P 1
R
, a 6= b, let B(a, b) denote the open ball in P 1(C) which passes through

a and b. If a > b, then B(a, b) is understood to contain ∞.

Let

D1 := B

(
−3

2
,
1

2

)
, D2 := B

(
−1

2
,
5

2

)
, D3 := B(0,−10),

D4 := B(10, 0), D5 := B

(
−5

2
,
1

2

)
, D6 := B

(
−1

2
,
3

2

)
.

Let

B(D;V ) :=

6⊕

j=1

B(Dj ;V ).

Analogously to Theorems 5.1 and 5.3 one shows the following relations between
the transfer operator family and the Selberg zeta functions. Note that the order of
poles differs from that in Theorems 5.1 and 5.3.

Theorem 5.5. (i) For Re s > 1
2 , the transfer operator Ls,χ is an operator on

B(D;V ) and as such nuclear of order 0.
(ii) For Re s > 1, we have Z(s, χ) = det(1− Ls,χ).
(iii) The map s 7→ Ls,χ extends meromorphically to all of C. The poles are all

simple and contained in 1
2 (1− N0). For each pole s0, there is a neighborhood

U of s0 such that the meromorphic extension is of the form

Ls,χ =
1

s− s0
As + Bs,

where the operators As and Bs are holomorphic on U , and As is of rank at
most 6 sd(χ).

(iv) The Fredholm determinant det(1 − Ls,χ) extends to a meromorphic function
on C whose poles are contained in 1

2 (1 − N0). The order of a pole is at most
6 sd(χ).

5.3. Non-cofinite Hecke triangle groups. Let Γ := Γλ be a non-cofinite Hecke
triangle group, thus λ > 2. Recall the elements a1, a2, a3 ∈ Γ from Section 4.3. The
fast discrete dynamical system (D,F ) for Γ is defined on

D :=
(
(−1,∞)st × {a}

)
∪
(
(−∞, 1)st × {b}

)
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and given by the weighted submaps

(−1, 0)st × {a} → (−1,∞)st × {a}, (x, a) 7→ (a2.x, a), wt : χ(a−1
2 ),

(0, 1)st × {a} → (−∞, 1)st × {b}, (x, a) 7→ (a3.x, b), wt : χ(a−1
3 ),

(−1, 0)st × {b} → (−1,∞)st × {a}, (x, b) 7→ (a2.x, a), wt : χ(a−1
2 ),

(0, 1)st × {b} → (−∞, 1)st × {b}, (x, b) 7→ (a3.x, b), wt : χ(a−1
3 ),

and, for n ∈ N,

(−1 + nλ,−1 + (n+ 1)λ)st × {a} → (−1,−1 + λ)st × {a},
(x, a) 7→ (a−n

1 .x, a), wt : χ(an1 ),

(1− (n+ 1)λ, 1− nλ)st × {b} → (1 − λ, 1)st × {b},
(x, b) 7→ (an1 .x, b), wt : χ(a−n

1 ).

The associated transfer operator with parameter s ∈ C is represented by the matrix

Ls,χ =




αs(a2)
∑
n∈N

αs(a
−n
1 ) αs(a2)

αs(a2) αs(a2)
αs(a3) αs(a3)
αs(a3)

∑
n∈N

αs(a
n
1 ) αs(a3)




acting formally on the function vectors

f =




f1 : (−1, 1)st → V
f2 : (−1 + λ,∞)st → V
f3 : (−∞, 1− λ)st → V

f4 : (−1, 1)st → V


 .

Let

D1 := B(−1, 1), D2 := B

(
5λ− 4

6
,−λ

2

)
, and D3 := B

(
λ

2
,
4− 5λ

6

)
,

and set

B(D;V ) := B(D1;V )⊕B(D2;V )⊕B(D3;V )⊕B(D1;V ).

Analogously to Theorems 5.1 and 5.3 the following results are shown.

Theorem 5.6. (i) For Re s > 1
2 , the transfer operator Ls,χ defines a nuclear

operator on B(D;V ) of order 0. The map s 7→ Ls,χ extends meromorphically
to all of C with possible poles located at s = (1 − k)/2, k ∈ N0. All poles are
simple. For each pole s0, there is a neighborhood U of s0 such that Ls,χ is of
the form

Ls,χ =
1

s− s0
As + Bs,

where the operators As and Bs are holomorphic on U , and As is of rank at
most 2 sd(χ).

(ii) For Re s > max(dimΛ(Γ), 1
2 ) we have Z(s, χ) = det(1−Ls,χ). Moreover, the

Fredholm determinant s 7→ det(1 − Ls,χ) extends to a meromorphic function
on C with possible poles located in 1

2 (1 − N0). The order of a pole is at most
2 sd(χ).
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6. Symmetry reduction

Suppose that the representation (V, χ) of Γλ decomposes into a direct (finite) sum

(10) χ =

m⊕

j=1

χj

of representations (Vj , χj) of Γλ. Then the Selberg zeta function factors accordingly
[36, Theorem 7.2]:

(11) Z(s, χ) =

m∏

j=1

Z(s, χj).

The structure of the interaction of the representation χ with the action τs yields
that this kind of factorization already happens at the level of the transfer operators,
and that (11) is an immediate consequence of this more general result.

Theorem 6.1. Suppose that χ decomposes as in (10), and let Ls,χ be a transfer
operator of the form as in Section 4 or 5. Then

(12) Ls,χ =
m⊕

j=1

Ls,χj
.

Moreover,

(13) Z(s, χ) =

m∏

j=1

Z(s, χj).

Proof. Obviously, we have

Fct(D;V ) =

m⊕

j=1

Fct(D;Vj) and B(D;V ) =

m⊕

j=1

B(D;Vj).

For any g ∈ Γλ and any function f , the map τs(g) only acts on the argument of f ,
while χ(g) only acts on the vector f(z). Therefore,

αV
s (g) = χ(g)τVs (g) =

m⊕

j=1

χj(g)τ
Vj
s (g) =

m⊕

j=1

αVj
s (g).

This implies (12). Then (13) follows immediately from

Z(s, χ) = det(1 − Ls,χ)

= det
(
1−

m⊕

j=1

Ls,χj

)
=

m∏

j=1

det(1− Ls,χj
)

=

m∏

j=1

Z(s, χj).

�
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7. Billiard flows

Recall the elements

Q =

[
0 1
1 0

]
and J =

[
−1 0
0 1

]

in PGL2(R). The discrete dynamical systems and the transfer operators from
Sections 4 and 5 commute with the action of Q and αs(Q) for Γλ with λ < 2
respectively with the action of J and αs(J) for Γλ with λ ≥ 2. As shown in [21] for
Γλ with λ < 2 with the trivial representation (C, id) this exterior symmetry allows
us to characterize even/odd Maass cusp forms as those period functions that are
invariant/anti-invariant under τs(Q), and it results in a factorization of the Selberg
zeta function.

An approach from a higher point of view was taken on in [28] and [31], where Γλ

was extended by these symmetries and then the billiard flow was considered. In
the following we briefly survey this approach and extend it to include non-trivial
representations.

Let

Γ̃λ := 〈Q,Γλ〉 = 〈J,Γλ〉 ≤ PGL2(R)

denote the triangle group underlying the Hecke triangle group. Further, we extend

the representation (V, χ) of Γλ to a representation of Γ̃λ, also denoted by χ, by
defining χ(Q) (or, equivalently, χ(J)).

We consider the billiard flow on Γ̃λ\H, that is, the geodesic flow on Γ̃λ\H considered

as an orbifold. We inherit the cross sections for the geodesic flow on Γλ\H to Γ̃λ\H
by taking “half” of it and then use the arising discrete dynamical systems to define
the transfer operator families. For example, the cross section for Γλ, λ ≥ 2, is only
C′

a from Section 4.2 respectively 4.3. For Γλ with λ = 2 cosπ/q and q odd, it is

(14) C′ := {v ∈ SH | Rebase(v) = 0, γv(∞) ∈ (0, 1]st, γv(−∞) ∈ (−∞, 0)st}.

For Γλ with λ = 2 cosπ/q and q even, the point 1 ∈ R is an endpoint of periodic
geodesics. For that reason one cannot simply use (14) as cross section but rather
needs an average over all reasonable choices for C′ to achieve that the tangent
vectors belonging to these special periodic geodesics are “inner vectors”. We refer
to [28] for details. The upshot is that the contribution from the element gq/2 gets
an additional weight of 1/2. We also refer to [28, 31] for the explicit formulas for the
arising discrete dynamical systems which only need to be extended by the obvious

weights. The discrete dynamical systems for Γ̃2 are constructed in an analogous
way.

To keep this article to a reasonable length, we only state the results for some cofinite
Hecke triangle groups. For the others, analogous results are true. Recall that for

g ∈ Γ̃λ we have N(g) = N(g2)1/2.

Theorem 7.1. Let Γλ be a cofinite Hecke triangle group with λ = 2 cos π
q , q odd.

Set m := q+1
2 .
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(i) The transfer operator associated to the slow discrete dynamical system for Γ̃λ

is

Lslows,χ =

q−1∑

k=m

αs(gk) + αs(Qgk),

acting on Fct((0, 1);V ).
(ii) Suppose that V = C and χ acts trivially on Γλ.

(a) If χ(Q) = 1 and Re s ∈ (0, 1), then the even Maass cusp forms for Γλ are
isomorphic to the eigenfunctions with eigenvalue 1 of Lslows,χ that satisfy
the regularity conditions from Theorem 4.1.

(b) If χ(Q) = −1 and Re s ∈ (0, 1), then the odd Maass cusp forms for Γλ are
isomorphic to the eigenfunctions with eigenvalue 1 of Lslows,χ that satisfy
the regularity conditions from Theorem 4.1.

(iii) The transfer operator associated to the fast discrete dynamical system for Γ̃λ

is

Lfasts,χ =




∑
n∈N

αs(Qgnq−1)
q−2∑
k=m

αs(gk) + αs(Qgk)

∑
n∈N

αs(g
n
q−1) + αs(Qgnq−1)

q−2∑
k=m

αs(gk) + αs(Qgk)


 ,

acting on B(T −1.Eq−1;V )⊕B(T −1.Er;V ). For Re s > 1
2 , they define nuclear

operators of order 0, and s 7→ Lfasts,χ extends meromorphically to all of C with
poles located as in Theorem 5.1 of order at most 2 sd(χ).

(iv) For Re s > 1 we have

det(1 − Lfasts,χ ) =
∏

[g]∈[Γ̃λ]p

∞∏

k=0

det
(
1− χ(g) det gkN(g)−(s+k)

)
,

which is a dynamical zeta function.

Proof. These statements (and also the corresponding statements for the other Hecke
triangle groups) are easily adapted from [28, 31]. �

In Theorem 7.1(ii) we see that this specific choice of representation mimicks Dirich-
let (χ(Q) = 1) respectively Neumann (χ(Q) = −1) boundary conditions. The
same interpretation also holds for the fast transfer operators and their dynamical
zeta functions, for which we refer to [28]. We remark that these results allow us
to reformulate the Phillips–Sarnak conjecture on the non-existence of even Maass
cusp forms in terms of non-existence of non-trivial highly regular 1-eigenfunctions
of Lslows,χ and Lfasts,χ .

It would be interesting to see if there is a similar interpretation for more general
representations, in particular if dimV > 1.
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