7,524 research outputs found

    On the existence of Nash equilibria in strategic search games

    Get PDF
    We consider a general multi-agent framework in which a set of n agents are roaming a network where m valuable and sharable goods (resources, services, information ....) are hidden in m different vertices of the network. We analyze several strategic situations that arise in this setting by means of game theory. To do so, we introduce a class of strategic games that we call strategic search games. In those games agents have to select a simple path in the network that starts from a predetermined set of initial vertices. Depending on how the value of the retrieved goods is splitted among the agents, we consider two game types: finders-share in which the agents that find a good split among them the corresponding benefit and firsts-share in which only the agents that first find a good share the corresponding benefit. We show that finders-share games always have pure Nash equilibria (pne ). For obtaining this result, we introduce the notion of Nash-preserving reduction between strategic games. We show that finders-share games are Nash-reducible to single-source network congestion games. This is done through a series of Nash-preserving reductions. For firsts-share games we show the existence of games with and without pne. Furthermore, we identify some graph families in which the firsts-share game has always a pne that is computable in polynomial time.Peer ReviewedPostprint (author’s final draft

    Axiomatic Approach to Solutions of Games

    Full text link
    We consider solutions of normal form games that are invariant under strategic equivalence. We consider additional properties that can be expected (or be desired) from a solution of a game, and we observe the following: - Even the weakest notion of individual rationality restricts the set of solutions to be equilibria. This observation holds for all types of solutions: in pure-strategies, in mixed strategies, and in correlated strategies where the corresponding notions of equilibria are pure-Nash, Nash and coarse-correlated. An action profile is (strict) simultaneous maximizer if it simultaneously globally (strictly) maximizes the payoffs of all players. - If we require that a simultaneous maximizer (if it exists) will be a solution, then the solution contains the set of pure Nash equilibria. - There is no solution for which a strict simultaneous maximizer (if it exists) is the unique solution

    Efficient Local Search in Coordination Games on Graphs

    Get PDF
    We study strategic games on weighted directed graphs, where the payoff of a player is defined as the sum of the weights on the edges from players who chose the same strategy augmented by a fixed non-negative bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. Prior work shows that the problem of determining the existence of a pure Nash equilibrium for these games is NP-complete already for graphs with all weights equal to one and no bonuses. However, for several classes of graphs (e.g. DAGs and cliques) pure Nash equilibria or even strong equilibria always exist and can be found by simply following a particular improvement or coalition-improvement path, respectively. In this paper we identify several natural classes of graphs for which a finite improvement or coalition-improvement path of polynomial length always exists, and, as a consequence, a Nash equilibrium or strong equilibrium in them can be found in polynomial time. We also argue that these results are optimal in the sense that in natural generalisations of these classes of graphs, a pure Nash equilibrium may not even exist.Comment: Extended version of a paper accepted to IJCAI1

    CP-nets and Nash equilibria

    Full text link
    We relate here two formalisms that are used for different purposes in reasoning about multi-agent systems. One of them are strategic games that are used to capture the idea that agents interact with each other while pursuing their own interest. The other are CP-nets that were introduced to express qualitative and conditional preferences of the users and which aim at facilitating the process of preference elicitation. To relate these two formalisms we introduce a natural, qualitative, extension of the notion of a strategic game. We show then that the optimal outcomes of a CP-net are exactly the Nash equilibria of an appropriately defined strategic game in the above sense. This allows us to use the techniques of game theory to search for optimal outcomes of CP-nets and vice-versa, to use techniques developed for CP-nets to search for Nash equilibria of the considered games.Comment: 6 pages. in: roc. of the Third International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS '05). To appea

    Competition for order flow as a coordination game

    Get PDF
    Competition for order flow can be characterized as a coordination game with multiple equilibria. Analyzing competition between dealer markets and a crossing network, we show that the crossing network is more stable for lower traders’ disutilities from unexecuted orders. By introducing private information, we prove existence of a unique equilibrium with market consolidation. Assets with low volatility and large volumes are traded on crossing networks, others on dealer markets. Efficiency requires more assets to be traded on crossing networks. If traders’ disutilities differ sufficiently, a unique equilibrium with market fragmentation exists. Low disutility traders use the crossing network while high disutility traders use the dealer market. The crossing network’s market share is inefficiently small
    corecore