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Abstract. We consider a general multi-agent framework in which a set
of n agents are roaming a network where m valuable and sharable goods
(or resources or services or information) are hidden in m different ver-
tices of the network. We analyze several strategic situations that arise in
this setting by means of game theory. To do so we introduce a class of
strategic search games. In such a game each agent has to select a sim-
ple path in the network that starts from a predetermined set of initial
vertices. Depending on how the value of the retrieved goods is splitted
among the agents we consider two game types: finders-share in which
the agents that find a good split among them the corresponding benefit
and firsts-share in which only the agents that first find a good share the
corresponding benefit. We show that finders-share games always have
pure Nash equilibria (pne). For obtaining this result we introduce the
notion of Nash preserving reduction between strategic games. We show
that finders-share games are Nash reducible to single-source network
congestion games. This is done through a series of Nash preserving re-
ductions. For firsts-share games we show the existence of games with
and without pne. Furthermore we identify some graph families in which
the firsts-share game has always a pne that is computable in polynomial
time.

1 Introduction

In the classical setting search games are intended to look upon the situation as
a game between a searcher and a hider and the aim of the analysis is to provide
optimal strategies for the participants [4, 3]. That is strategies that allow the
searcher to find the hider and the hider to avoid the searchers. In our approach
we are interested in analyzing the strategic situation that arises when a set of
hiders do not move and a set of searchers set their strategies in a selfish way
considering economical benefits and rewards. We consider a general framework
of strategic search in which a set of n mobile agents are roaming a network
where m valuable items or resources or information are hidden in m different

? The first and third authors were partially supported by TIN-2007-66523 (FOR-
MALISM). The second author was supported by TIN-2007-11345 (ALINEX-2). The
fourth author was supported by the project “Kapodistrias” (AΠ 02839/28.07.2008)
of the National and Kapodistrian University of Athens (project code: 70/4/8757).

57



vertices. We want to take into consideration different aspects that affect the
agents decisions and rewards in order to analyze the existence of equilibria. This
framework differs from other resource sharing strategic games considered in the
literature, in particular from the well known framework of congestion games
[11, 8]. In this initial work we concentrate in analyzing the existence or not of
pure Nash equilibria in a static draw of the proposed games, before defining the
games, we consider the main parameters and take some initial decision for the
model.

Benefit? Benefit depends on one side on the cost that the agents have to pay
for traversing network links and on the other in the way in which the rewards
or the value of the goods found by the agent is distributed among the agents
that discover the same good. We consider two natural reward models. When the
good is non portable any agent that discovers it will get some benefit. When the
good is portable only agents that arrive for the first time to the good location
can benefit from the discovery. Therefore we consider two game variants: The
finders-share game in which the item value is splitted equitably among all the
players that discover it and the firsts-share game in which the item value is
shared only among all the agents that discover the item first (all of them at the
same time).

Where do the agents start their roaming? We consider two different possibilities:
Players start their roaming at one initial vertex or can choose one from a set of
initial vertices. In both cases we consider the particular case in which the initial
vertices (or set of vertices) is the same for all the players.

What is the cost for the agents? It seems natural that they have to incur some
cost in traversing a link. This cost might arise as the cost of communication
or movement. We assume that each link in the network has associated a non
negative cost. To any agent’s trajectory we associate as cost the sum of the cost
of the edges present in it.

How the players move? We consider different kinds of trajectories. Initially we
study the problems assuming that the players strategy is formed by the selec-
tion of a simple path (without repeated nodes) in the network. We analyze also
finders-share games under two other trajectories: paths, now nodes can be re-
peated but edges can not appear twice, and trees. When the trajectory is a path,
a player can pass more that once through one edge in order to access additional
valuable resources. The tree trajectory arises naturally assuming that the agents
are buying the links in their trajectories, so that they can cross them as many
times as they wish without additional payment, thus avoiding cycles.

We show that finders-share games in which the players are restricted to se-
lect a simple path always have pure Nash equilibria (pne). This result is in-
dependent of the type of initial location or on whether the network is directed
or undirected. For doing so we introduce the notion of Nash preserving reduc-
tion between strategic games. This is an appropriate extension of traditional re-
ducibility among problems. Those reductions preserve the existence of pne and
the fact that a pne can be computed in polynomial time. We show that finders-
share games are Nash reducible to single-source network congestion games. This
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is done through a series of Nash preserving reductions. First, by a series of trans-
formations, we reduce the general case to the single-source finders-share game.
Finally, the single-source finders-share game is reduced to the single-source net-
work congestion game. These reductions guarantee also the property that a pne
can be computed in polynomial time.

For the firsts-share games in which the players are restricted to select a
simple path we show the existence of games with and without pne, for different
variations of the type of game. Furthermore, we identify some graph families
in which the firsts-share game has always a pne. In those cases we provide
algorithms for computing a pne in polynomial time.

Finally we consider the two variations on the trajectories, allowing paths
with repeated nodes or allowing trees. We show that in both cases the finders-
share games can be Nash reduced to congestion games. This reduction shows
the existence of pne but leaves open the existence or not of a polynomial time
algorithm for computing a pne for such games.

2 Definitions and preliminaries

All through the paper we use the standard graph notation and in particular we
consider that for an undirected graph: A walk is a sequence of vertices such that
for each pair of consecutive vertices the corresponding edge is present in the
graph. A path is a walk in which none of the edges appears twice. A simple path
is a walk in which none of the vertices appears twice.

In the case of considering arcs instead of edges we add to the name of these
sequences the adjective directed (directed walk, directed path and directed simple
path, respectively).

A strategic game Γ = (N, (Πi)i∈N , (ui)i∈N ) is defined by a finite set of players
or agents N = {1, . . . , n}, a finite set of strategies (or actions) Πi, for each agent
i ∈ N , and a payoff function ui : Π → R, for each player i ∈ N . Define the set
Π = ×i∈NΠi, every element (p1, . . . , pn) ∈ Π is known as a pure strategy profile
or configuration and represents a possible outcome of the game. We also denote
Π of Γ by Π(Γ ).

Given a profile π = (p1, . . . , pn), pi represents the strategy followed by agent
i ∈ N . In addition, it is usual to denote by (π−i, p), with i ∈ N , the profile that
we obtain substituting the i-th element of π (pi) by p. A Pure Nash Equilibrium
(pne, for short) is a configuration π = (π1, . . . , πn) such that for each agent
i ∈ N ui(π) ≥ ui((π−i, p)) for any p ∈ Πi. We denote as pne(Γ ) the set of pure
Nash equilibria of game Γ .

A congestion game is defined by a tuple Γ = (N,E, (Πi)i∈N , (de)e∈E) where
N = {1, . . . , n} is the set of players, E is a finite set of resources,Πi ⊂ P(E) is the
set of allowed actions for each player i ∈ N , and de : N→ R is the delay function
of each resource e ∈ E, which is assumed to be polynomial-time computable and
models the delay de(k) provoked by resource e under a congestion k ∈ {1, . . . , n}.
de(k) is nondecreasing in k. Let Π = ×i∈NΠi. For all π = (p1 . . . , pn) ∈ Π and
for every e ∈ E let ωe(π) be the number of users of resource e according to the
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configuration π, ωe(π) = |{i ∈ N : e ∈ pi}|. Each player i ∈ has associated a
cost function ci : Π → R defined by

ci(π) =
∑

e∈pi

de(ωe(π)).

We can also say that each player i has a payoff function ui and it is defined in
terms of the cost function as usual as ui(π) = −ci(π).

Using the definition coming from [1] a network congestion game Γ is a con-
gestion game defined in a directed graph using the arcs as resources. Formally, it
is defined by a tuple Γ = (N,G, (si, ti)i∈N , (de)e∈E(G)) where N = {1, . . . , n} is
the set of players, G = (V,E) is a directed graph, (si, ti) ∈ V × V is the pair of
origin and destination nodes (or source and target nodes) for each player i ∈ N ,
and de : N → R is the delay function of every edge e ∈ E, which is assumed to
be polynomial-time computable.

The strategy set of player i consists of simple paths in the directed graph G.
In fact, Πi is the set of all simple paths from si to ti, denoted as all (si-ti) paths,
where the notation (s-t) path refers to a simple path between the nodes s and t.
Since only simple paths are considered, the set formed by all the (si-ti) paths is
finite. In the case in which all the pairs (si, ti) coincide with a unique pair (s, t),
the game is said to be a single-commodity network congestion game, (otherwise
it is called multi-commodity) and since all players share the same strategy-set
the game is said to be symmetric.

It is useful to define a suitable notion of reduction among strategic games
that preserves the existence of pne and if this is the case, the complexity of
finding a pne.

Let G1, G2 be two classes of strategic games. We say that G1 is Nash preserving
reducible or reducible to G2 (in polynomial-time) if there exist two (polynomial-
time) computable functions f and g such that for any strategic game Γ , if Γ ∈ G1
then

i) f(Γ ) ∈ G2,
ii) if π is and strategy profile of the game f(Γ ) then g(π) is a strategy profile

of Γ , and
iii) if π is a pne of f(Γ ) then g(π) also is a pne of Γ .

The following result follows from the definition.

Theorem 1. Let G1, G2 be two classes of strategic games. If any game in G2 has
a pure Nash equilibrium and G1 is reducible to G2 then any game in G1 has a pure
Nash equilibrium. If any game in G2 has a pure Nash equilibrium computable in
polynomial time and G1 is reducible to G2 in polynomial time then any game in
G1 has a pure Nash equilibrium computable in polynomial time.

There is a rich literature on congestion games [11, 7, 6, 10, 1, 9, 5, 2, 8], here
are some results concerning pne that we use.

Theorem 2 (Rosenthal [11]). Every congestion game has a pne.
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Theorem 3 (Fabrikant, Papadimitriou, Talwar [1]). There is a polynomial
time algorithm to compute a pne in symmetric network congestion games (single-
commodity network congestion games).

In what follows we consider that a network N is a tuple consisting of a
weighted graph G = (V,E) with non-negative weights ae associated to each
edge e ∈ E(G) (the toll of traversing edge e) and non-negative weights bv
associated to each vertex v ∈ V (G) (the value of the hidden item), this is,
N = (G, (ae)e∈E(G), (bv)v∈V (G)). In the case that the graph is directed we use
the term directed network and for undirected graphs the term undirected net-
work.

3 Finders-share games

We start introducing the first family of strategic search games in which the
benefit obtained from a node is splitted evenly among all the agents that have
discovered the node.

A finders-share game is a tuple Γ = (N,N , (si)i∈N ) representing the strategic
game in which: N is a set of n players. N = (G, (ae)e∈E(G), (bv)v∈V (G)) is a
network. For each player i there is a special vertex si of the graph which is its
starting point (its source or origin). The strategies Πi for player i are the set of
simple paths in G starting from source si.

Given a configuration π = (p1, . . . , pn), the payoff or utility function ui for
player i is defined as follows.

ui(π) =
∑

v∈pi

bv
lv(π)

−
∑

e∈pi

ae.

where lv(π) = |{i|v ∈ pi}| is the number of players whose strategy contains
vertex v.

Without lost of generality, all trough this article, we consider that the weight
associated to each starting point is zero. This fact does not affect any of the
results as we can consider the following transformation of the graph. We add
an additional vertex per each source. The new source is connected only to the
original source. Assigning weight zero to the new sources and to the connecting
links we have a polynomial reduction to the variant in which the sources have
always zero weight.

In the case in which all the si coincide with a unique vertex s the game is
said to be a single-source, denoted as Γ = (N,N , s). Otherwise the game is
multi-source.

In the case of strategic search games in which the source point for a player is
a set of vertices instead of a single vertex the game is said to be multi-start and
can be single or multi-source, depending on whether the starting set is common
or not to all the players. Observe, that the most general class is formed by the
multi-start multi-source games that include all the other classes.
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Given an undirected network with associated graph G, we consider the di-
rected network with associated graph Gd. Gd is obtained by transforming every
edge {u, v} ∈ V (G) with the same associated weight a{u,v} to the two arcs (u, v),
(v, u) each with associated weight a{u,v}. Observe that there is a one-to-one cor-
respondence between the set of simple paths in G and the set of simple paths in
Gd. Using this argument and taking into account that the node and edge weights
do not change we obtain the following result.

Lemma 1. The class of finders-share games for undirected networks is polyno-
mial time reducible to the class of finders-share games for directed networks.

Now we show the reduction from multi-start to multi-source finders-share
games.

Lemma 2. For directed networks, the class of multi-start multi-source finders-
share games is polynomial time reducible to the class of multi-source games
finders-share.

Proof. Given Γ = (N,N , (Si)i∈N ) a multi-start multi-source finders-share game,
we define the corresponding multi-source finders-share game Γ ′ = f(Γ ) as fol-
lows. Assume that N = (G(V,E), (bv)v∈V , (ae)e∈E). Then Γ ′ = (N,N ′, (si)i∈N )
where N ′ = (G(V ′, E′), (b′v)v∈V , (a′e)e∈E) with:

– V ′ = V ∪ {si|i ∈ N}, where si is a new vertex for player i. For each v ∈
V, b′v = bv and ∀i ∈ N, b′si = 0.

– E′ = E ∪ {(si, u)|i ∈ N ∧ u ∈ Si} where for each player i we add one edge
from si to each different starting node u ∈ Si. For each e ∈ E, a′e = ae and
∀i ∈ N, u ∈ Si, a

′
(si,u)

= 0.

Finally, (si)i∈N is the set of added vertices and si is the source of each player
i ∈ N .

In order to distinguish the utility functions of both games, let us denote by
ui (u′i) the utility function of player i in Γ (Γ ′).

Additionally, for any simple path p′ of G(V ′, E′) starting at a source node of
si, we define its corresponding simple path p of G(V,E) as follows:

i) If p′ = si, v0, . . . , vm then p = v0, . . . , vm. Notice that si is a new node of Γ ′

and p′ = si, p where p is a simple path in G(V,E) starting at v0 ∈ Si.
ii) If p′ = si then p = v for some arbitrary node v ∈ Si

We define a mapping g : Π(Γ ′)→ Π(Γ ) such that for every strategy profile
π′ = (p′1, . . . , p

′
n) ∈ Π, g(π′) = π where π = (p1, . . . , pn). Note that g(π′−i, p

′
i) =

(π−i, pi). If we consider the load of each v ∈ V − ⋃1≤i≤n Si in both profiles
π′ and π = g(π′) we have that lv(π′) in Γ ′ coincides with lv(π) in Γ . The
load of the source nodes v ∈ ⋃1≤i≤n Si in Γ may be different from the load in
Γ ′ but in both games the benefit bv = 0 as well as bsi = 0 for each new si.
Finally, note that for the new added edges a(si,u) = 0. Hence, for each player i,
u′i(π

′) = ui(g(π′)) = ui(π).

62



Therefore, if π′ = (p′1, . . . , p
′
n) is in pne(Γ ′) then for every player i and every

p′ starting at si u
′
i(π
′) = ui(π) ≥ u′i((π

′
−i, p

′)) = ui((π−i, p)) implying that
π = g(π′) is in pne(Γ ).

Since f and g are polynomial-time computable, the result follows. ut

Finally we reduce to the class of single-source finders-share games.

Lemma 3. For directed networks, the class of multi-source finders-share games
is polynomial time reducible to the class of single-source finders-share games.

Proof. Given a multi-source finders-share game Γ = (N,N , (si)i∈N ) we define
the corresponding single-source finders-share game f(Γ ) = Γ ′ = (N,N ′, s) as
follows:

Assume that N = (G(V,E), (ae)e∈E , (bv)v∈V ) and that si is the starting
vertex of ki players. Let b =

∑
v∈V (G) bv, k = max{ki|i ∈ N} and a = (k + 1)b.

Then we define N ′ = (G(V ′, E′), (b′v)v∈V , (a′e)e∈E) where V ′ = V ∪ {s} and
E′ = E ∪ {(s, si)|i ∈ N}. The weights are defined as:

– b′s = 0, for each player i, b′si = kia, and for each v in V \ {(si)i∈N}, b′v = bv.
– For each player i, a′(s,si) = a and, for each e ∈ E, a′e = ae.

Let us denote by ui the utility function of player i in Γ and by u′i the utility
function of player i in Γ ′. Notice that by the definition of Γ ′, each simple path
p′ in Γ ′ starts at s it continues visiting some of the original source nodes si of
Γ . Hence p′ = s, p where p is a simple path of Γ . By definition of a and b, in
any strategy profile π′ of Γ ′, if a node si in Γ ′ is visited by more than ki players
then u′i(π

′) < 0. Hence it can not be a pne since u′i(π
′
−i, s) = 0.

We define a mapping g : Π(Γ ′) −→ Π(Γ ) such that for every π′ = (p′1, . . . , p
′
n) ∈

Π, g(π′) = π where π = (p1, . . . , pn) where

i) If p′i = s, si, p (p may be empty), then pi = si, p, and
ii) If p′i = s, sj , p (p may be empty) and j 6= i, then pi = si.

Notice that ∀i ∈ N ,

ui(π) =

{
u′i(π

′) if p′i = s, si, p,
0 otherwise (u′

i(π
′) < 0 and then π′ is not a pne.)

Therefore, if π′ is in pne(Γ ′) we have that u′i(π
′) = ui(π) ≥ u′i((π

′
−i, p)) =

ui(g(π′−i, p)) for any strategy p of player i ∈ N of Γ ′, implying that π is in
pne(Γ ).

Since f and g are polynomial-time computable, the result follows. ut

Next result shows the reduction to single-commodity network congestion
games.

Lemma 4. For directed networks, the class of single-source finders-share games
is polynomial time reducible to the class of single-commodity network congestion
games.
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Proof. Given a single-source finders-share game Γ = (N,N , s), we define the
corresponding network congestion game Γ ′ = f(Γ ) as follows. Assume that
N = (G(V,E), (ae)e∈E , (bv)v∈V ). G′ = (V ′, E′) where:

– V ′ = V ∪ {t} ∪ {u′|u ∈ V \ {s}}.
– E′ = E∪{(u, u′)|u ∈ V \{s}}∪{(u′, t)|u′ ∈ V ′ \{V ∪{t}}}∪{(u′, v)|(u, v) ∈
E}.

– We define the non-decreasing delay function de(x) as follows.

de(x) =





0 if e = (u, t), u ∈ V ′ \ V
ae′ if e′ = (u, v) ∈ E and e = (u′, v)

− bu
x if e ∈ {(u, u′)|u ∈ V, u′ ∈ V ′ \ V }

Finally, Γ ′ = (N,G′, (s, t), (de)e∈E(G)).
Additionally, for every strategy profile π′ = (p′1, . . . , p

′
n) in Π(Γ ′) such that

p′i = s, v0, v
′
0, . . . , vk, v

′
k, t is a simple path, we define π = g(π′) of Π(Γ ) as

π = (p1, . . . , pn) with pi = s, v0, . . . , vk. Notice that ∀i ∈ N , pi is a simple path
and that ci(π

′) = ui(π). Therefore, if π′ is in pne(Γ ′) we have that ci(π
′) =

ui(π) ≥ ci((π
′
−i, p)) = ui(g(π′−i, p)) for any strategy p of player i ∈ N of Γ ′,

implying that π is in pne(Γ ).
Since f and g are polynomial-time computable, the result follows. ut

As a consequence of the previous results and Theorems 2 and 3 we can state
the following.

Theorem 4. Every multi-start multi-source finders-share game on a directed or
undirected graph has a pne. Furthermore, a pne can be computed in polynomial
time.

4 Firsts-share games

Now we introduce the second family of strategic search games in which the
benefit obtained from a node is splitted evenly only among all the agents that
discover first the node. We assume uniformity on the time to traverse a link and
measure time by number of traversed links.

A firsts-share game is a tuple Γ = (N,N , (si)i∈N ) representing the strategic
game in which strategies are the same as for the finders-search games but given
a configuration π = (p1, . . . , pn), the utility function ui for player i is defined as:

ui(π) =
∑

v ∈ pi
d(v, pi) = dmin(v, π)

bv
lv(π)

−
∑

e∈pi

ae

where, d(v, pi) denotes the distance from the source to v in pi (and it is defined
as the length of the path from the source to v if v is in pi and as ∞ otherwise),
dmin(v, π) = min{d(v, pi) | pi ∈ π}) is the minimum distance of v over every pi
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in the strategic profile π and, lv(π) = |{i ∈ N |dist(v, pi) = dmin(v, π)}| is the
number of players whose strategy contains vertex v with minimal distance to
the source.

Let us observe that the difference between firsts-share games and finders-
share games relies on the definition of lv(π). As we shall see in what follows, this
difference in the splitting of discoveries has relevant implications on the existence
of pne as the games have very different properties.

(v1,4)

(e2,2)(e1,2)

(s,0)

(v2,7)
(e3,3) (e3,3)

(v1,4)

(e2,2)(e1,2)

(s,0)

(v2,7)
(e3,3)

(v1,4)

(e2,2)(e1,2)

(s,0)

(v2,7)

Fig. 1. Examples of firsts-share games for 2 players that do not have pne.

Theorem 5. In the class of firsts-share games there are games with pne and
games without pne.

Proof. The games with two players associated to the graphs in Fig. 1 do not have
a pne. The proof is by exhaustive inspection of all strategy profiles. Examples of
firsts-share game with pne can be obtained from the graphs in Figure 1 changing
the weights of vertices v1 and v2 to 2, of edges e1 and e2 to 1 and of edge e3 to
0. In all the cases the proof of existence or not of pne is by inspection of all the
possible strategy profiles for the two players. ut

Using a construction inspired in the examples in Fig. 1 we can state conditions
under which the family of search games that are played on a fixed graph does
not always have a pne.

Theorem 6. Let G be a graph and s ∈ V (G). If there is a vertex v ∈ V (G) such
that there are two paths of different length from s to v, then there is a weight
assignment to G for which the corresponding search game has no pne.

Now we identify some subfamilies of games, defined by properties of the net-
work, with pne. According to the previous results we have to restrict our subfam-
ilies to guarantee some equidistance properties for the sources. Observe that the
reduction from the multi-source to the single-source version of the finders-share
game given in Lemma 3 is not valid anymore as this reduction might generate
paths of different lengths from the new source.

Observe that an undirected graph that contains a cycle accessible from a
source verifies the conditions of Theorem 6. Therefore, for having always a pne,
independently of the weights, we must restrict to acyclic undirected graphs. In
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such a case the graph is a forest and therefore there is a unique simple path
from every potential source to any other vertex of the same tree. In such a case
firsts-share and finders-share benefits are the same and, according to Theorem 4,
we have the following result.

Theorem 7. Every single-source firsts-share game played in a forest has a pne
that can be computed in polynomial time.

For the case of directed graphs we introduce three graph families: equidistant
graphs, hierarchical-equidistant graphs and asymmetric tree coupling, and show
the existence of pne for the associated firsts-share game.

An equidistant graph is a directed network with a set of k ≥ 1 sources
s1, . . . , sk in which: (a) For any vertex u and any source si all the simple paths
from si to u have the same length. (b) For any vertex u and any two sources si
and sj such that there is a path from si to u and from sj to u, both paths have
the same length.

Observing that in such a graph the utility function for every player is the
same for firsts-share game than for finders-share game because the distances are
equal we obtain the following result.

Theorem 8. Every single and multi-source firsts-share game played in an equi-
distant graph has a pne that can be computed in polynomial time.

A hierarchical-equidistant graph is a directed network whose set of vertices
V and of sources S can be partitioned into k subsets V1, . . . , Vk and S1, . . . , Sk

respectively in such a way that: (a) The subgraph of G restricted to Vi and Si,
for every 1 ≤ i ≤ k, is an equidistant graph. (b)For all i, j with 1 ≤ i < j ≤ k
and every vertex u ∈ V , if there is a path from a source in si ∈ Si to u and a
path from a source sj ∈ Sj to u then it follows that the path from si to u is
shorter than the path from sj to u.

We provide a polynomial time algorithm for computing a pure Nash equi-
libria. The algorithm uses self-reducibility and the polynomial time algorithm
for equidistant graph. The recursion relies on the hierarchical structure of the
sources.

Theorem 9. Every single and multi-source firsts-share game played in a hierar-
chical-equidistant graph has a pne that can be computed in polynomial time.

Proof. Consider the following algorithm in which players from different sources
play among them on a particular subgraph that is determined by the strategies
of the previously considered players.

In round 1 the players whose source is in S1 select their strategy according to
a pne π1 in the graph G[V1]. This Nash equilibrium is computed in polynomial
time using the algorithm in Theorem 8. Since all the players whose source is
not in S1 arrive later to nodes in V1 there is no conflict with the hidden items
in these nodes and therefore players starting in S1 won’t have any incentive to
change their strategy. Players starting from other sources cannot get any benefit
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from the discovered places. Therefore the selections of the players in S1 remain
fixed for forthcoming rounds. For doing so we modify the node weights of the
nodes in the paths selected in π1 to zero. The same procedure is repeated for
rounds 2 to k. At round i the players in Si compute a pure Nash equilibrium πi
on the graph modified according to the selected strategies π1, . . . , πi−1.

Since for every round, the selection of strategies is performed in polynomial
time and there are k such rounds, the pne is computed in polynomial time. ut

An asymmetric tree coupling is a directed network composed by two rooted
trees on the same set of leaves, oriented from the root to the leaves, such that
each leaf has a different distance from the two roots. We provide a polynomial
time algorithm based on a conquer and retreat paradigm combined with a greedy
algorithm for computing a pne in a single-source firsts-share game played on a
tree.

Theorem 10. Every 2-source firsts-share game played in an asymmetric tree
coupling has a pne that can be computed in polynomial time.

Proof. Our algorithm for computing a equilibrium is based on a conquer and
retreat paradigm. Initially the players with source si (i = 1, 2) play the search
game on a subtree that contains only those leaves that are closer to their source.
Along the algorithm players will be able to reconsider their position but allowing
paths that use leaves that were not used by their opponent. Before describing
the algorithm we need a piece that solves the problem of recomputing a pne on
a single-source tree with additional accessible leaves.

Assume that we have a tree T , and a subsets of leaves L. Assume also that
we have a strategy profile π which is a pne in the subtree in which the leaves in
L′ are removed. The following greedy rule computes a pne for T .

GreedyNash(T, L, π) Compute the path pm in π with minimum benefit
an the path pM not in π with maximum benefit. If the benefit obtained
in pm is strictly smaller than that of pM assign pM to one of the player
playing pm. Repeat the process until no changes are made.

Observe that the algorithm finalizes in polynomial time as the number of
considered paths is polynomial, the graph is a tree, besides the minimum and
strictly increasing rule guarantees that an abandoned path will provide benefit
below the minimum path benefit on the new profile and, therefore, will never be
reconsidered again. At the end of the algorithm we have that all the non used
paths have benefit at most the minimum over the selected paths, so the resulting
strategy is a pne.

Let G = (V,E) be an asymmetric tree coupling formed by the two trees
T1 = (V1, E1) and T2 = (V2, E2). Let L1 be the set of leaves whose distance to
the root of T1 is smaller than their distance to the root of T2 and L2 be the set
of leaves in which this distance is greater.

Consider the following algorithm in which initially we compute separately
pnes for the two search games in which the two trees are separated and the
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players have access only to the shortest distance to their source leaves. The
algorithm will refine this situation by allowing the conquest of the opponents
unused leaves.

Set A1 = L1 and A2 = L2.
Compute π1 a pne for the game played on the tree T1 removing the leaves
in L2.
Compute π2 a pne for the game played on the tree T2 removing the leaves
in L1.
Let A′1 be the set of leaves occupy by π1
Let A′2 be the set of leaves occupy by π2
Set found (A1 = A′1 or A2 = A′2).
while not found do

A1 = A′1; A2 = A′2.
π1 = GreedyNash(T1, A2, π1).
Let A′1 be the set of leaves occupy by π1
If A1 = A′1, found = true
otherwise,

π2 = GreedyNash(T2, A
′
1, π2).

Let A′2 be the set of leaves occupy by π2
If A2 = A′2, found= true

endif

endwhile
return (π1, π2).

In the first steps the algorithm computes a pne for the set of players with
source si, in the graph formed by the subtree of Ti that results from subtracting
the set of leaves closed to the other source. Observe that, if either π1 or π2 occupy
the whole sets L1 or L2 respectively, then the strategic profile π = (π1, π2), is a
pne for the game in which the whole network G is considered.

In the forthcoming rounds the algorithm starts with a set of leaves L′i, for
each player i, that has been occupy by the pne computed in the previous step.
In next round, we allow, first, players from s1 to play in the tree with their
closed leaves and the opponent unused leaves. Let π′1 be the resulting pne that
doesn’t occupy the set of leaves E′1 ⊆ L1. Then, either E′1 = L′1 and in this case
π = (π1, π2) is a pne, or E′1 ⊃ L′1 since the unique way a player from s1 can
ameliorate his strategy is by means of a new path, one not considered in previous
round, and therefore using at least an additional leaf closer to s2. Observe that
either we found a pne or the subset of leaves used by players from source s1 in
L2 has increased at least by one.

The process continues in alternative rounds until the set of occupy leaves
doesn’t change. The final strategic profiles of the two set of players will conform
then a pne for the game in the whole network G.

Since the size of the sets of conquered leaves from s1 in L2 and from s2 in
L1 increases at each complete round, the maximum number of possible rounds
is O(|L1|+ |L2|) and therefore a pne can be computed in polynomial time. ut
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All along this section we have taken the number of edges as the measure of
the length of a path. The results in this section also hold when each edge has
associated a positive integer distance of polynomial length.

5 Finders-share games under other strategy definitions

We consider now the case in which the strategy for each player is selected from
the set of all paths (instead of the set of all simple-paths) of the network starting
at the designated origins. Recall that in a path the agent can pass more than
once through a node but cannot use twice the same link (edge or arc). We have
the following result.

Theorem 11. Every finders-share game played in a directed or undirected search
network where the set of trajectories consists of paths always has a pne.

Proof. We show that when the set of possible strategies Π consists of a set
of paths of a directed or undirected network every finders-share game can be
reduced to a congestion game. Thus, as a consequence of Theorem 2, we get the
claimed result.

Consider a finders-share game Γ = (N,N , (Si)i∈N ) on an undirected network
N , where agent i ∈ N is allowed to follow any path starting at some vertex in
the set Si. For any agent i ∈ N , set P(i) to be the set of allowed trajectories for
i, that is all paths in N that start in a vertex in Si. For any path p in N define
R(p) to be the set formed by all the nodes and edges that appear in p. We define
the corresponding congestion game Γ ′ = f(Γ ) = (N,R, (Πi)i∈N , (de)e∈R) as
follows. Assume that N = (G(V,E), (ae)e∈E , (bv)v∈V ), then R = V ∪E. For any
i ∈ N , set Πi = {R(p) | p ∈ P(i)}. For any r ∈ R we define the non-decreasing
delay function dr(x) as follows.

dr(x) =

{
ar if r ∈ E
− br

x if e ∈ V

For every strategy for agent i in Γ ′ we associate, in a unique way, a valid
path for agent i in N . Observe that when the set of edges form a cycle there
might be more that one path giving raise to this set. To break ties we will use
the lexicographic order of edges going out of a node. In a cycle of an undirected
graph we select the first edge in lexicographic order to start traversing the cycle.
When the trajectory have more than one cycle, we traverse cycles in lexicographic
order. In this way we define, for any strategy profile, π′ = (p′1, . . . , p

′
n) in Π(Γ ′)

a strategy profile π = (p1, . . . , pn) = g(π′) of Π(Γ ). Observe that g can be
computed in polynomial time.

Notice that ∀i ∈ N , pi is a path starting at some allowed vertex for agent
i, and that ci(π

′) = ui(π). Therefore, if π′ is in pne(Γ ′) we have that ci(π
′) =

ui(π) ≥ ci((π
′
−i, p)) = ui(g(π′−i, p)) for any strategy p of player i ∈ N of Γ ′,

implying that π is in pne(Γ ).
Since f and g are polynomial-time computable, the result follows.
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For the case of a directed network the proof follows the same lines but we
have to consider as resources in the congestion game the union of nodes and
arcs. ut

We can also consider the case in which the cost per edge corresponds to
buying the right to traverse the edge as many times as wished. It is easy to
show that, under such cost interpretation for the finders-share search game pne
happens only on strategies that correspond to a subtree rooted at the associated
starting vertex of the graph. The proof of the following result is similar to the
one for path strategies.

Theorem 12. Every finders-share game played in a directed or undirected search
network where the set of trajectories consists of trees always has a pne.

Proof. Consider a finders-share strategic search game Γ = (N,N , (Si)i∈N ) on an
undirected network N , where agent i ∈ N is allowed to select any tree rooted at
some vertex in the set Si. For any agent i ∈ N , set T (i) to be the set of allowed
trajectories for i, that is all trees inN rooted in a vertex in Si. For any tree t inN
define R(t) to be the set formed by all the nodes and edges that appear in t. We
define the corresponding congestion game Γ ′ = f(Γ ) = (N,R, (Πi)i∈N , (de)e∈R)
as follows. Assume that N = (G(V,E), (ae)e∈E , (bv)v∈V ), then R = V ∪ E. For
any i ∈ N , set Πi = {R(p) | p ∈ P(i)}. For any r ∈ R we define the non-
decreasing delay function dr(x) as follows.

dr(x) =

{
ar if r ∈ E
− br

x if e ∈ V

Observe that for every strategy for agent i in Γ ′ we can associate, in a unique
way, a valid tree for agent i in N . In this way we define, for any strategy profile,
π′ = (p′1, . . . , p

′
n) in Π(Γ ′) a strategy profile π = (p1, . . . , pn) = g(π′) of Π(Γ ).

Furthermore, ∀i ∈ N , pi is a tree rooted at some vertex in Si and that, by
definition, we have that ci(π

′) = ui(π). Therefore, if π′ is in pne(Γ ′) we have
that ci(π

′) = ui(π) ≥ ci((π
′
−i, p)) = ui(g(π′−i, p)) for any strategy p of player

i ∈ N of Γ ′, implying that π is in pne(Γ ).
Since f and g are polynomial-time computable, the result follows.
For the case of a directed network the proof is the same, considering as

resources the union of nodes and arcs. ut

The previous results guarantee only the existence of pne but it remains open
whether a polynomial time algorithm for computing one pne exists in those
particular cases.

6 Conclusions and open problems

We have defined a new class of strategic games, those games have been moti-
vated by the study of resource discovery in distributed networks. We believe that
this framework is general enough to incorporate other mechanism to splitting
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benefits and costs in other settings. We have also introduced the notion of Nash
preserving reduction that could be used to derive further results in the study
of other strategic games. Our results show a close connection with network con-
gestion games for the finders-share model while for the firsts-share the games
behave differently from the point of view of the existence of pne.

There are still many open problems concerning the firsts-share model, among
others, characterize the networks with pne. Observe that in some cases this might
be difficult as the existence of pne depends on the edge and node weights. It
will be of interest to determine whether the existence of pne can be solved in
polynomial time for non-equidistant networks. In the asymmetric tree coupling
nodes are dominated by exactly one of the two sources, we do not know whether
the existence of pne can be established for a tree coupling in which a subset of
the leaves are at the same distance from the two sources.

For the finders-share cost model we have shown the existence of pne equilibria
and that a pne can be obtained in polynomial time, independently of the number
of sources. It will be of interest to analyze further properties on the structure of
the pne in regard to some topological graph property.
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