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Abstract

We study strategic games on weighted directed
graphs, where the payoff of a player is defined as
the sum of the weights on the edges from play-
ers who chose the same strategy augmented by a
fixed non-negative bonus for picking a given strat-
egy. These games capture the idea of coordination
in the absence of globally common strategies. Prior
work shows that the problem of determining the ex-
istence of a pure Nash equilibrium for these games
is NP-complete already for graphs with all weights
equal to one and no bonuses. However, for sev-
eral classes of graphs (e.g. DAGs and cliques) pure
Nash equilibria or even strong equilibria always ex-
ist and can be found by simply following a partic-
ular improvement or coalition-improvement path,
respectively. In this paper we identify several nat-
ural classes of graphs for which a finite improve-
ment or coalition-improvement path of polynomial
length always exists, and, as a consequence, a Nash
equilibrium or strong equilibrium in them can be
found in polynomial time. We also argue that these
results are optimal in the sense that in natural gen-
eralisations of these classes of graphs, a pure Nash
equilibrium may not even exist.

1 Introduction
Nash equilibrium is an important solution concept in game
theory which has been widely used to reason about strategic
interaction between rational agents. Although Nash’s theo-
rem guarantees existence of a mixed strategy Nash equilib-
rium for all finite games, pure strategy Nash equilibria need
not always exist. In many scenarios of strategic interaction,
apart from the question of existence of pure Nash equilibria,
an important concern is whether it is possible to compute an
equilibrium outcome and whether a game always converges
to one. The concept of improvement paths is therefore fun-
damental in the study of strategic games. Improvement paths
are essentially maximal paths constructed by starting at an
arbitrary joint strategy and allowing players to improve their
choice in a unilateral manner. At each stage, a single player
who did not select a best response is allowed to update his

choice to a better strategy. By definition, every finite im-
provement path terminates in a Nash equilibrium. In a sem-
inal paper, Monderer and Shapley [18] studied the class of
games in which every improvement path is guaranteed to be
finite, which was coined as the finite improvement property
(FIP). They showed that games with the FIP are precisely
those games to which we can associate a generalised ordinal
potential function. Thus FIP not only guarantees the exis-
tence of pure Nash equilibria but also ensures that it is pos-
sible to converge to an equilibrium outcome by performing
local search. This makes FIP a desirable property to have in
any game. An important class of games that have the FIP is
congestion games [21]. However, the requirement that every
improvement path is finite, turns out to be a rather strong con-
dition and there are very restricted classes of games that have
this property.

Young [23] proposed weakening the finite improvement
property to ensure the existence of a finite improvement path
starting from any initial joint strategy. Games for which this
property hold are called weakly acyclic games. Thus weakly
acyclic games capture the possibility of reaching pure Nash
equilibria through unilateral deviations of players irrespective
of the starting state. Milchtaich [16] showed that although
congestion games with player specific payoff functions do not
have the FIP, they are weakly acyclic. Weak acyclicity of a
game also ensures that certain modifications of the traditional
no-regret algorithm yields almost sure convergence to a pure
Nash equilibrium [15].

Although finite improvement path guarantees the existence
of a Nash equilibrium, it does not necessarily provide an
efficient algorithm to compute an equilibrium outcome. In
many situations, improvement paths could be exponentially
long. In fact, Fabrikant et al. [10] showed that computing a
pure Nash equilibrium in congestion games is PLS-complete.
Even for symmetric network congestion games, where it is
known that a pure Nash equilibrium can be efficiently com-
puted [10], there are classes of instances where any best re-
sponse improvement path is exponentially long [1]. Thus
identifying classes of games that have finite improvement
paths in which it is possible to converge to a Nash equilib-
rium in a polynomial number of steps is of obvious interest.

In game theory, coordination games are often used to
model situations in which players attain maximum payoff
when agreeing on a common strategy. In this paper, we study



a simple class of coordination games in which players try to
coordinate within a certain neighbourhood. The neighbour-
hood structure is specified by a finite directed graph whose
nodes correspond to the players. Each player chooses a colour
from a set of available colours. The payoff of a player is
defined as the sum of the weights on the edges from play-
ers who choose the same colour and a fixed bonus for pick-
ing that particular colour. These games constitute a natural
class of strategic games, which capture the following three
key characteristics. Join the crowd property: the payoff of
each player weakly increases when more players choose her
strategy. Asymmetric strategy sets: players may have differ-
ent strategy sets. Local dependency: the payoff of each player
depends only on the choices made by the players in its neigh-
bourhood.

A similar model of coordination games on graphs was
introduced in [2] where the authors considered undirected
graphs. However, the transition from undirected to directed
graphs drastically changes the status of the games. For in-
stance, in the case of undirected graphs, coordination games
have the FIP. While in the directed case, Nash equilibria may
not exist. Moreover, the problem of determining the existence
of Nash equilibria is NP-complete for coordination games on
directed graphs [4]. However, if the underlying graph is a di-
rected acyclic graph (DAG), a complete graph or a simple cy-
cle, then pure Nash equilibria always exist. These proofs can
easily be adapted to show that weighted DAGs and weighted
simple cycles have finite improvement paths.
Related work. Although the class of potential games are
well studied and has been a topic of extensive research,
weakly acyclic games have received less attention. Engelberg
and Schapira [7] showed that certain Internet routing games
are weakly acyclic. In a recent paper Kawald and Lenzner
[14] show that certain classes of network creation games
are weakly acyclic and moreover that a specific schedul-
ing of players can ensure that the resulting improvement
path converges to a Nash equilibrium in O(n log n) steps.
Brokkelkamp and Vries [6] improved Milchtaich’s result [16]
on congestion games with player specific payoff functions by
showing that a specific scheduling of players is sufficient to
construct an improvement path that converges to a Nash equi-
librium.

Unlike in the case of exact potential games, there is no neat
structural characterisation of weakly acyclic games. Some
attempts in this direction has been made in the past. Fab-
rikant et al. [8] proved that the existence of a unique (pure)
Nash equilibrium in every sub-game implies that the game
is weakly acyclic. A comprehensive classification of weakly
acyclic games in terms of schedulers is done in [3]. Finally,
Milchtaich [17] showed that every finite extensive-form game
with perfect information is weakly acyclic.

The model of coordination games are related to various
well-studied classes of games. Coordination games on graphs
are polymatrix games [13]. In these games, the payoff for
each player is the sum of the payoffs from the individual
two player games he plays with every other player separately.
Hoefer [12] studied clustering games that are also polymatrix
games based on undirected graphs. However, in this setup
each player has the same set of strategies and it can be shown

Graph Class improvement path c-improvement path
weighted DAGs O(n) [4] O(n) [4]

weighted simple cycles
with 2 bonuses

O(n) [Thm. 5] O(n) [Thm. 7]

open chains of cycles O(nm2) [Thm. 9] O(nm3) [Cor. 14]
closed chains of cycles O(nm2) [Thm. 11] O(nm3) [Thm. 13]

weighted open chains of
cycles

O(nm3) [Thm. 10] ??

weighted closed chains of
cycles

Nash equilibrium may not exist [Example 12]

partition-cycles O(n(n− k)) [Thm. 18] ??
partition-cycles+bonuses O(kn(n− k)) [Thm. 20] ??
weighted partition-cycles Nash equilibrium may not exist [Example 19]

Table 1: An upper bound on the length of the shortest
improvement and c-improvement path for a given class of
graphs. All edges are unweighted and there are no bonuses
unless the name of the class says otherwise. For simple cycles
and chains of cycles we assume that each cycle has n nodes
and the number of cycles in the chain is m. For partition-
cycles, n is the total number of nodes and 1 ≤ k < n is the
number of nodes in the top part of the cycle (set VT ).

that these games have the FIP. A model that does not assume
all strategies to be the same, but is still based on undirected
graphs, was shown to have the FIP in [20]. When the graph is
undirected and complete, coordination games on graphs are
special cases of the monotone increasing congestion games
that were studied in [22].
Our contributions. In this paper, we identify some natural
classes of polymatrix games based on the coordination game
model, which even though do not have the FIP (cf. Exam-
ple 4 in [4]), are weakly acyclic. We also show that for these
games a finite improvement path of polynomial length can
be constructed in a uniform manner. Thus not only do these
games have pure Nash equilibria, but they can also be effi-
ciently computed by local search.

We start by analysing coordination games on simple cy-
cles. Even in this simple setting, improvement paths of infi-
nite length may exist. However, we show that there always
exists a finite improvement path of polynomial length. We
then extend the setting of simple cycles in two directions.
First we consider chains of simple cycles where we show that
polynomial length improvement paths exist. We then con-
sider simple cycles with cross-edges and show the existence
of polynomial length improvement paths. We also demon-
strate that these results are optimal in the sense that most nat-
ural generalisations of these structures may result in games in
which a Nash equilibrium may not even exists. Most of our
constructions involve a common proof technique: we identify
a specific scheduling of players using which, starting at an ar-
bitrary initial joint strategy, we can reach a joint strategy in
which at most two players are not playing their best response.
We argue that such a joint strategy can then be updated to
converge to a Nash equilibrium. We also identify a structural
condition on coalitional deviation once a Nash equilibrium is
attained. This property is then used to show the existence of
a finite “coalitional” improvement path which terminates in
a strong equilibrium. Our results also imply an almost sure



convergence, although not necessarily in a polynomial num-
ber of steps, to a Nash equilibrium when the order of devia-
tions is random, but “fair”. Fairness requires that for any devi-
ation, there is a fixed nonzero lower bound on the probability
of it taking place from any state of the game where it can be
taken. Note that this implies that the same holds for any finite
sequence of deviations. A Nash equilibrium is reached al-
most surely with such a random order of deviations, because
when starting at any state we either follow a finite improve-
ment path to a Nash equilibrium with a nonzero probability or
that path stops in some new state from where we can follow
another finite improvement path with a nonzero probability.
As this repeats over and over again, almost surely one such
finite improvement path will succeed.

Table 1 summarises most of our results.
Potential applications. Coordination games constitute an
abstract game model which is well studied in game theory
and has been shown to model many practical scenarios. The
game model that we consider in this paper is an extension
of coordination games to the network setting (in which the
neighbourhood relation is specified using a directed graph)
where common strategies are not guaranteed to exist and pay-
offs are not necessarily symmetric.

The graph classes that we consider are typical for network
topologies, e.g. token ring local area networks are organ-
ised in directed simple cycles, open chains topology is sup-
ported by recommendation G.8032v2 on Ethernet ring pro-
tection switching, and closed chains are used in multi-ring
protocols. The basic technique that we use to show conver-
gence to Nash equilibria is based on finite improvement paths
of polynomial length. The concept of an improvement path
is fundamental in the study of games and it has been used
to explain and analyse various real world applications. One
such example is the border gateway protocol (BGP) which
establishes routes between competing networks on the Inter-
net. Over the years, there has been extensive research, es-
pecially in network communications literature, on how stable
routing states are achieved and maintained in BGP in spite of
strategic concerns. Fabrikant and Papadimitriou [9] and in-
dependently, Levin and others [11] observed that BGP can be
viewed as best-response dynamics in a class of routing games
and finite improvement paths that terminates in a pure Nash
equilibria essentially translates to stable routing states. Fol-
lowing this observation, Engelberg and Schapira [7] presents
a game theoretic analysis of routing on the Internet where
they show weak acyclicity of various routing games.

The coalition formation property inherent to coordination
games on graphs also make the game model relevant to cluster
analysis. In cluster analysis, the task is to organise a set of ob-
jects into groups according to some similarity measure. Here,
the strategies can be viewed as possible cluster names and a
pure NE naturally corresponds to a ‘satisfactory’ clustering
of the underlying graph. Clustering from a game theoretic
perspective was for instance applied to car and pedestrian de-
tection in images, and face recognition in [19]. This approach
was shown to perform very well against the state of the art.

Structure of the paper. In Section 3 we introduce the game
model and make an important observation on the structure of

coalition deviation from a Nash equilibrium in coordination
games on directed graphs. In Section 4 we analyse games
whose underlying graphs are simple cycles. In Section 5 we
study chains of cycles and in Section 6 we consider simple
cycles with cross edges.

2 Preliminaries
A strategic game G = (S1, . . . , Sn, p1, . . . , pn) with n > 1
players, consists of a non-empty set Si of strategies and a
payoff function pi : S1 × · · · × Sn→ R, for each player i.
We denote S1 × · · · × Sn by S, call each element s ∈ S
a joint strategy and abbreviate the sequence (sj)j 6=i to s−i.
Occasionally we write (si, s−i) instead of s. We call a strat-
egy si of player i a best response to a joint strategy s−i of his
opponents if for all s′i ∈ Si, pi(si, s−i) ≥ pi(s′i, s−i).

We call a non-empty subset K := {k1, . . . , km} of the set
of players N := {1, . . . , n} a coalition. Given a joint strat-
egy s we abbreviate the sequence (sk1

, . . . , skm
) of strategies

to sK and Sk1
× · · · × Skm

to SK . We occasionally write
(sK , s−K) instead of s. If there is a strategy x such that
si = x for all players i ∈ K, we also write (xK , s−K) in-
stead of s.

Given two joint strategies s′ and s and a coalition K, we
say that s′ is a deviation of the players in K from s if K =

{i ∈ N | si 6= s′i}. We denote this by sK→s′. If in addition
pi(s

′) > pi(s) holds for all i ∈ K, we say that the deviation
s′ from s is profitable. Further, we say that a coalition K can
profitably deviate from s if there exists a profitable deviation
of the players in K from s. Next, we call a joint strategy
s a k-equilibrium, where k ∈ {1, . . . , n}, if no coalition of
at most k players can profitably deviate from s. Using this
definition, a Nash equilibrium is a 1-equilibrium and a strong
equilibrium, see [5], is an n-equilibrium.

A coalitional improvement path, in short a c-improve-
ment path, is a maximal sequence ρ = (s1, s2, . . . ) of
joint strategies such that for every k > 1 there is a coali-
tion K such that sk is a profitable deviation of the play-
ers in K from sk−1. If ρ is finite then by last(ρ) we
denote the last element of the sequence. Clearly, if a c-
improvement path is finite, its last element is a strong equi-
librium. We say that G is c-weakly acyclic if for every joint
strategy there exists a finite c-improvement path that starts
at it. Note that games that are c-weakly acyclic have a
strong equilibrium. We call a c-improvement path an im-
provement path if each deviating coalition consists of one
player. The notion of a game being weakly acyclic [23;
16], is then defined by referring to improvement paths instead
of c-improvement paths.

3 Coordination games on directed graphs
We now define the class of games we are interested in. Fix a
finite set of colours M . A weighted directed graph (G,w) is
a structure where G = (V,E) is a graph without self loops
over the vertices V = {1, . . . , n} and w is a function that
associates with each edge e ∈ E, a non-negative weight we.
We say that a node j is a neighbour of the node i if there is
an edge j → i in G. Let Ni denote the set of all neighbours



of node i in the graph G. A colour assignment is a func-
tion C : V → 2M which assigns to each node of G a finite
non-empty set of colours. We also introduce the concept of a
bonus, which is a function β that to each node i and a colour
c ∈ M assigns a natural number β(i, c). Note that bonuses
can be modelled by incoming edges from fixed colour source
nodes, i.e. nodes with no incoming edges and only one colour
available to them. When stating our results, bonuses are as-
sumed to be not present, unless we explicitly state that they
are allowed. Bonuses are extensively used in our proofs be-
cause a coordination game restricted to a given subgraph can
be viewed as a coordination game with bonuses induced by
the remaining nodes of the graph.

Given a weighted graph (G,w), a colour assignmentC and
a bonus function β a strategic game G(G,w,C, β) is defined
as follows: the players are the nodes,

• the set of strategies of player (node) i is the set of colours
C(i); we occasionally refer to the strategies as colours.

• the payoff function pi(s) =
∑

j∈Ni, si=sj
wj→i +

β(i, si).

So each node simultaneously chooses a colour and the pay-
off to the node is the sum of the weights of the edges from
its neighbours that chose its colour augmented by the bonus
to the node from choosing the colour. We call these games
coordination games on directed graphs, from now on just
coordination games. When the weights of all the edges are
1, we obtain a coordination game whose underlying graph
is unweighted. In this case, we simply drop the function
w from the description of the game. Similarly if all the
bonuses are 0 then we obtain a coordination game without
bonuses. Likewise, to denote this game we omit the function
β. In a coordination game without bonuses where the under-
lying graph is unweighted, each payoff function is defined by
pi(s) := |{j ∈ Ni | si = sj}|.

Finally, given a directed graph G and a set of nodes K, we
denote by G[K] the subgraph of G induced by K.

We now show a structural property of a coalition deviation
from a Nash equilibrium in our coordination games. This will
be used later to prove c-weak acyclicity for a class of games
based on their weak acyclicity. Note that this cannot be done
for all classes of graphs, because there exist a coordination
game on undirected graph which is weakly acyclic, but has
no strong equilibrium [2].

Lemma 2. Any profitable coalition deviation from a Nash
equilibrium includes a unicoloured directed simple cycle.

Proof. Let s be any Nash equilibrium in the game and
let coalition K have a profitable deviation, s′, from s.
It suffices to show that each node in K has a predeces-
sor in K deviating to the same colour. Assume that for
some player i ∈ K it is not the case. We then have
the following: pi(s) < pi(s

′
K , s−K) =

∑
j∈K:s′j=s′i

wj→i

+
∑

j 6∈K:sj=s′i
wj→i +β(i, s′i) ≤ 0 +

∑
j:sj=s′i

wj→i +

β(i, s′i) = pi(s
′
i, s−i), so player i would also be able to im-

prove his payoff by unilaterally switching to s′i in s, which
contradicts the fact that s is a Nash equilibrium.

Example 1. ([4]) Consider the directed graph and the colour
assignment depicted in Figure 1. Take the joint strategy s that
consists of the underlined strategies. Then the payoffs are as
follows:

• 0 for the nodes 1, 7, 8 and 9,

• 1 for the nodes 2, 4, 5, 6,

• 2 for the node 3.

Note that the above joint strategy is not a Nash equilibrium. For
example, node 1 can profitably deviate to colour a.

1 {a, b}

2 {a, c}3{b, c}

4 {a, b}

5 {a, c}

6{b, c}

7 {a}

8 {c}9{b}

Figure 1: A directed graph with a colour assignment.

4 Simple cycles
In this section we focus on the case when the game graph is a
directed simple cycle. Despite the simplicity of this model the
problems we consider are already nontrivial for such a basic
graph structure. We first restate a result from [4] where un-
weighted graphs are considered. To fix the notation, suppose
that the considered graph is 1 → 2 → . . . → n → 1. Below
for i ∈ {2, . . ., n}, i	 1 = i− 1, and 1	 1 = n.
Theorem 3. ([4]) Every coordination game with bonuses
on an unweighted simple cycle has a c-improvement path of
length O(n).

We would like to extend this result to weighted graphs with
bonuses. However as the following example demonstrates, if
in a simple cycle, we allow non-trivial weights on at least
three edges and associate bonuses with at least three nodes
then there are coordination games that need not even have a
Nash equilibrium.
Example 4. Consider the simple cycle on three nodes 1, 2
and 3 in which all the edges have weight 2. Let C(1) =
{a, b}, C(2) = {a, c} and C(3) = {b, c}. Let the bonus be
defined as β(1, a) = β(2, c) = β(3, b) = 1 and equal to 0
otherwise. The structure essentially corresponds to the one
shown in Figure 1. The resulting coordination game does not
have a Nash equilibrium. Below we list all the joint strategies
and we underline a strategy that is not a best response to the
choice of other players: (a, a, b), (a, a, c), (a, c, b), (a, c, c),
(b, a, b), (b, a, c), (b, c, b) and (b, c, c).

We show here that this counterexample is essentially min-
imal, i.e. if only two nodes have bonuses or only two edges
have weights then the coordination game is weakly acyclic.
Theorem 5. Every coordination game on a weighted simple
cycle in which at most two nodes have bonuses has an im-
provement path of length O(n).



Proof. Assume without loss of generality that one of the
nodes which has a bonus is node 1 (otherwise we can re-label
the nodes on the cycle). Let the other vertex with a bonus be
some k ∈ N . Let s be an arbitrary joint strategy. We perform
the following sequence of best response updates.

We proceed around the cycle in the order 1, . . . , n and let
players switch to any of their best responses. We argue that
in at most three rounds, the resulting improvement path ter-
minates in a Nash equilibrium. At the end of the first round,
players 2, . . . , n are playing their best response. If the result-
ing joint strategy s1 is a Nash equilibrium, then we stop. Oth-
erwise player 1 strategy s11 is not a best response to s1−1. Let
player 1 update his strategy, denote the resulting joint strategy
s2. There are two cases:

• Suppose s21 = s1n. We proceed around the cycle in the
cyclic order up until the node k− 1 and update the strat-
egy of each player. Note that if at some point in between
we reach a Nash equilibrium then we stop, otherwise the
only colour that is propagated along the cycle until node
k − 1 is s1n. Let the resulting joint strategy be s3. Now
suppose s3k is not a best response to s3−k. Let player k
update his strategy and call the resulting joint strategy
s4. If s4k = s3k−1(= s1n) then we continue around the
cycle making players update to their best response. This
improvement path is guaranteed to terminate since the
only colour which is propagated is s1n. If s4k 6= s3k−1,
then s4k = ck for some ck ∈ C(k). Continue in the
cyclic order from k+1, . . . , n making players update to
their best response. Let the resulting joint strategy be s5.
Note that in this sequence if a player switches then it is
to the colour s4k = ck.
Suppose s51 is not a best response to s5−1, then let player
1 update and call the resulting joint strategy s6. If
s61 = s6n(= ck) then continue in the cyclic order from
2, . . . , k − 1. The only colour which is propagated is
ck and this improvement path is finite since the colour
chosen by k is ck. If s61 6= s6n then s61 = c1 for some
c1 ∈ C(1).
Now let players update to their best response in the
cyclic order 2, . . . , n. Either the improvement path ter-
minates before player k updates since his best response
remains ck or player k updates to c1 and then the im-
provement path also terminates since the only colour
which is propagated in the cycle is c1.

• Suppose s21 6= s1n, then s21 = c1. Proceed around the
cycle in the cyclic order and let players update to their
best responses. If player k switches to c1 then the only
colour which is propagated is c1 and the improvement
path terminates in one round. Otherwise, player k even-
tually updates to ck. As in the earlier case, let players
k + 1, . . . , n, 1, . . . , k − 1 update to their best response
in that order. The resulting improvement path is finite.

This proof can easily be adapted to show the same result for
graphs with at most two weighted edges.

Theorem 6. Every coordination game on a simple cycle with
bonuses where at most two edges have non-trivial weights
(i.e. weights greater than 1) has an improvement path of
length O(n).

The above results are optimal due to Example 4. We can
also show that if a game played on a simple cycle is weakly
acyclic, then it is c-weakly acyclic.

Theorem 7. In a coordination game played on a weighted
simple cycle with bonuses, any finite improvement path can
be extended to a finite c-improvement path just by adding one
profitable coalition deviation step at the end of it.

Proof. Let us denote by s a Nash equilibrium that this game
reaches via some finite improvement path. If s is a strong
equilibrium then we are done. Otherwise there exists a coali-
tion K with a profitable deviation, s′, from s. Due to Lemma
2, the coalition K has to include all players, because there
is only one cycle in the game graph, and all of them have to
switch to the same colour in s′. We argue that (s′, s−K) = s′

is a Nash equilibrium. Suppose there is a player i, that can
switch to colour x and improve his payoff. Then, s′i	1 6= x,
because all players play the same colour in s′. We have
pi(s) < pi(s

′) < pi((x, s
′
−i)) = β(i, x) ≤ pi((x, s−i));

a contradiction with the assumption that s is a Nash equilib-
rium.

Finally, let ρ = s, s1, s2, . . . be any c-improvement path.
Due to the above observations every si is a Nash equilibrium
where all players play the same colour. Note that it cannot
be si = sj for any i 6= j, because every si+1 is a profitable
deviation from si. Therefore any c-improvement path starting
at a Nash equilibrium is finite and its length is at most equal to
the number of colours in the game. However, we can cut this
path short by choosing as the first coalition deviation step the
last colouring in ρ. This would still be a profitable deviation
for all the players, because for all iwe have pi(s) < pi(s

1) <
pi(s

2) < . . ..

Corollary 8. Every coordination game on a weighted sim-
ple cycle in which at most two nodes have bonuses (or with
bonuses but in which at most two edges have non-trivial
weights) has a c-improvement path of length O(n).

5 Sequence of simple cycles
Next we look at the graph structure which consists of a chain
of m ≥ 2 simple cycles. Formally, for j ∈ {1, 2, . . . ,m},
let Cj be the cycle 1j → 2j . . . → nj → 1j . For simplicity,
we assume that all the cycles have the same number of nodes.
The results that we show hold for arbitrary cycles as long as
each cycle has at least 3 nodes. An open chain of cycles, N
is the structure in which for all j ∈ {1, . . . ,m − 1} we have
1j = kj+1 for some k ∈ {2, . . . , n}. In other words, it is a
chain of m cycles. First, we have the following result.

Theorem 9. Every coordination game on an unweighted
open chain of cycles has an improvement path of length
O(nm2).

Proof sketch. We provide a proof sketch, the details can be
found in the appendix.



The idea behind the proof is to view the open chain of cy-
cles as a sequence of simple cycles with bonuses. Here at
most two nodes in each cycle have non-trivial bonuses. We
then apply Theorem 3 to construct a finite improvement path
for each cycle and argue that these paths can be composed in
a certain manner to obtain a finite improvement path in the
open chain of cycles that terminates in a Nash equilibrium.

Let {Cj | j ∈ {1, 2, . . . ,m}} be the set of simple cycles
which constitute the open chain of cycles N . The maximum
in-degree of any node in N is two and in each Cj , there are
at most two nodes u and v with in-degree two with one of the
incoming edges x → u from a node x in Cj+1 if j < m and
the other y → v from a node y in Cj−1 if j > 1. Given a joint
strategy s, we can view these external incoming edges into Cj
as bonuses to the nodes u and v. That is, βs

j (u, c) = 1 if sx =
c and 0 otherwise, βs

j (v, c) = 1 if sy = c and 0 otherwise.
For all i ∈ {1j , . . . , nj} \ {u, v}, for all c, βs

j (i, c) = 0.
For each j ∈ {1, 2, . . . ,m} and a joint strategy s, consider

the cycle Cj along with the bonus βs
j . This induces a coor-

dination game on a (unweighted) simple cycle with bonuses.
By Theorem 3 such a coordination game is weakly acyclic.

Given a joint strategy s, for j ∈ {1, . . . ,m}, call the node
1j a break point in s if the following two conditions are satis-
fied:

(C1) ∀k ≤ j and i ∈ {1k, . . . nk}, si is a best response to
s−i,

(C2) s1j = snj .
For a joint strategy s, let guard(s) be the largest j ∈

{1, . . . ,m − 1} such that 1j is a break point in s, if no such
j exists then guard(s) = 0. Let s0 be an arbitrary joint strat-
egy in the game whose underlying graph is N . We construct
a finite improvement path inductively as follows. Initially,
the improvement path consists of the joint strategy s0. Sup-
pose we have constructed an improvement path ρ′ such that
last(ρ′) = s′. Choose the least j ∈ {1, . . . ,m} such that
there is a node in Cj which is not playing its best response in
s′. Apply Theorem 3 to the game induced by Cj and βs′

j to
extend the improvement path.

We can then argue that each time a cycle Cj+1 is updated,
either the number of cycles playing the best response strictly
goes up or if that quantity decreases, then the value of guard
strictly increases. Note that the value of guard is always
weakly increasing. Thus if we consider the pair, the value
of guard and the number of cycles playing the best response,
then this pair under lexicographic ordering forms a progress
measure for the specific scheduling of nodes defined above.
The value of guard is bounded by m − 1 and the number of
cycles is bounded by m.

The improvement path constructed in Theorem 3 is of
lengthO(n). Each time the number of cycles playing the best
response increase, a single colour can be propagated down the
entire chain of cycles. In the worst case, the value of the guard
can increase by 1 at the end of each phase. Thus in the worst
case, the length of the improvement path that is constructed
is O(nm2).

Weighted open chain of cycles. We say that an open chain
of cycles is weighted if at least one of the component cycle

has an edge with non-trivial weights (i.e. an edge with weight
at least 2). We now show that Theorem 9 can be extended to
the setting of weighted open chain of cycles.

As in the proof of Theorem 9, the idea behind the proof
is to view the weighted open chain of cycles as a sequence of
weighted simple cycles with bonuses. The crucial observation
is that at most two nodes in each cycle have bonuses. We can
then apply Theorem 5 to construct a finite improvement path
for each cycle and argue that these paths can be composed in
a specific manner.

Let {Cj | j ∈ {1, 2, . . . ,m}} be the set of simple cycles
which constitute the open chain of cycles N . By the defini-
tion of N , for all j ∈ {1, . . . ,m − 1}, the node 1j has in-
degree two with an edge nj → 1j of weight wj

1 and an edge
(k − 1)j+1 → 1j with weight wj

2. To simplify the presenta-
tion of the proof, we assume that for all j, wj

1 6= wj
2. We first

show the following two restricted results.

Lemma 1. In the open chain of cyclesN consisting of cycles
C1, . . . , Cm, if for all j ∈ {1, 2, . . . ,m−1} we have wj

1 > wj
2

then N is weakly acyclic.

Proof sketch. We provide a proof sketch, the details can be
found in the appendix. As in the proof of Theorem 9, given
a joint strategy s, we can view the external incoming edges
into Cj as bonuses to the corresponding nodes. The only dif-
ference in this case is that the value of the bonus instead of
being 1, is the weight of the corresponding edge. Let βs

j de-
note this bonus function. The cycle Cj along with βs

j defines
a coordination game on a weighted simple cycle with at most
two nodes having non-trivial bonuses. By Theorem 5, such a
coordination game is weakly acyclic.

Let s0 be an arbitrary joint strategy in the game whose un-
derlying graph is N . We construct a finite improvement path
inductively as follows. Initially, the improvement path con-
sists of the joint strategy s0. Suppose we have constructed
an improvement path ρ′ such that last(ρ′) = s′. Choose the
least j ∈ {1, . . . ,m} such that there is a node in Cj which is
not playing its best response in s′. Apply Theorem 5 to the
game induced by Cj and βs′

j to extend the improvement path.
Since wj

1 > wj
2 for all j, we can show that the partial im-

provement path ρ that is constructed in this manner satisfies
the following invariant:

(I) Let last(ρ) = s and let j be the largest index j ∈
{1, . . .m− 1} such that for all k ≤ j, i ∈ {1k, . . . nk},
si is a best response to s−i. If s1k 6= snk then snk 6∈
C(1k).

The invariant asserts that if in the strategy s, the choice
of the nodes 1k and its unique predecessor nk in Ck are not
the same then the colour chosen by nk is not in the available
colours for 1k. Using this, We can argue that the above pro-
cedure terminates in a Nash equilibrium.

Lemma 2. In the open chain of cyclesN consisting of cycles
C1, . . . , Cm, if for all j ∈ {1, 2, . . . ,m−1} we have wj

1 < wj
2

then N is weakly acyclic.



Proof. Let s0 be an arbitrary joint strategy in the game whose
underlying graph is N . We construct a finite improvement
path inductively as follows. Initially, the improvement path
consists of the joint strategy s0. Suppose we have constructed
an improvement path ρ′ such that last(ρ′) = s′. Choose the
greatest j ∈ {1, . . . ,m} such that there is a node in Cj which
is not playing its best response in s′. Apply Theorem 5 to the
game induced by Cj and βs′

j to extend the improvement path.
Since wj

1 < wj
2 for all j, we can show that the partial im-

provement path ρ that is constructed in this manner satisfies
the following invariant:

• Let last(ρ) = s and let j be the smallest index j ∈
{1, . . .m − 1} such that for all l ≥ j, i ∈ {1l, . . . nl},
si is a best response to s−i. If s1l 6= s(k−1)l+1 then
s(k−1)l+1 6∈ C(1k).

Due to the invariant above and the fact that wj
1 < wj

2 for
all j, we can use an argument very similar to that of the proof
of Lemma 1, to show that a finite improvement path can be
constructed.

Theorem 10. Every coordination game on a weighted open
chain of cycles has an improvement path of length O(nm3).

Proof sketch. Let N be the open chain of cycles consisting
of the sequence of weighted cycles C1, . . . , Cm. The idea is
to split this sequence of cycles into blocks. A block Bj is
simply a sequence of simple cycles inN , say Cp, . . . , Cl such
that one of the following conditions hold,

• for all k ∈ {p, . . . , l − 1} either wk
1 > wk

2 ,

• for all k ∈ {p, . . . , l − 1}, wk
2 > wk

1 .

We can then repeatedly apply Lemma 1 and 2 and com-
pose the resulting improvement paths in a specific manner to
construct a finite improvement path for N .

The improvement path constructed by applying Lemma 1
and Lemma 2 can be of length O(nm2). While composing
this path we might have to propagate colours down the chain.
We can argue that we always make progress by at least one
block. Thus in worst case, the length of the improvement path
can be O(nm3). The details can be found in the appendix.

If we allow both weights and bonuses in the underlying
graph which constitutes an open chain of cycles, then it fol-
lows from Example 4 that there are coordination games that
do not have a Nash equilibrium.

Closed chain of cycles. As earlier, let Cj be the cycle
1j → 2j . . . → nj → 1j for j ∈ {1, . . . ,m}. Consider
the structure in which for all j ∈ {1, . . . ,m − 1}, we have
1j = kj+1 for some k ∈ {2, . . . n} and 1m = k1. In other
words, instead of having a chain of simple cycles, we now
have a “cycle” of simple cycles. We can argue that if these
simple cycles are unweighted then the coordination game
whose underlying graph is such a structure remains weakly
acyclic. However, if we allow the simple cycles to have non-
trivial weights then the resulting game need not have a Nash

1 {a, b}

2 {a, c}3{b, c}

4 {a}

5 {c}

6{b}
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2

Figure 2: A weighted closed chain of cycles with no Nash
equilibrium.

equilibrium as demonstrated in Example 12. Note that to con-
struct a counter example (Figure 2), we only need three cycles
each containing three nodes and a single edge in each cycle
with weight 2.

Theorem 11. Every coordination game on an unweighted
closed chain of cycles has an improvement path of length
O(nm2).

Proof sketch. Let {Cj | j ∈ {1, 2, . . . ,m}} be the set of sim-
ple cycles which constitute the graph C. In each Cj , there is
exactly two nodes with in-degree two. By the definition of
C, the simple cycles C1 and Cm share one node 1m = k1 for
some k ∈ {1, . . . n}. Let s0 be an arbitrary joint strategy in
the game whose underlying graph is C. The idea of the proof
is to view the sequence of cycles C1, . . . , Cm−1 as an open
chain of cycles. By Theorem 9, there is a finite improvement
path starting at s0 and terminating in s1 such that for all nodes
in cycles C1, . . . , Cm−1 are playing their best response in s1.
We can argue that this path can be extended to a finite im-
provement path in C. The improvement path constructed by
applying Theorem 9 has length O(nm2). And this can be
extended to a finite improvement path in C with a constant
number of updates of nodes in the cycles. The details can be
found in the appendix.

Example 12. Consider the coordination game with the un-
derlying graph given in Figure 2. Here, the nodes 4, 5, and
6 do not have a choice of colours and so in any joint strat-
egy they need to choose the unique colour in their respective
colour set. The set of joint strategies that we need to consider
is then the same as given in Example 4. It follows that the
game does not have a Nash equilibrium.

As in the case of simple cycles, we can show that un-
weighted closed chains of cycles and open chains of cycles
are c-weakly acyclic. This implies the existence of strong
equilibria in coordination games played on such graph struc-
tures.

Theorem 13. Every coordination game on an unweighted
closed chain of cycles has a c-improvement path of length
O(nm3).

Proof sketch. We provide a proof sketch, the details can be
found in the appendix. Let s be a Nash equilibrium that this
game reaches via an improvement path of length O(nm2) as
constructed in Theorem 11. If s is not a strong equilibrium,
then there exists a coalition K with a profitable deviation,



s′, from s. Due to Lemma 2, the coalition K has to include
at least one simple cycle, C, switching to the same colour
in s′. This can be one of the cycles Ci or one of the two
cycles going around the whole game graph containing the set
of nodes A = {1j | j ∈ {1, . . . ,m}}. Note that s′ may
not be a Nash equilibrium but because the game is weakly
acyclic there is a finite improvement path which leads to a
Nash equilibrium s′′ from s′. We can argue that s′i = s′′i for
all i ∈ C.

Now again, if s′′ is not a strong equilibrium, then there
exists a new coalition K ′ with a profitable deviation, s′′′,
from s′′. We can show that either C = A or no node from
C can be part of K ′. This implies that we can construct a c-
improvement path by appropriately composing the improve-
ment paths from Theorem 11 along with deviations by simple
cycles. At least one simple cycle changes colour in each such
deviation and none of its nodes change colour afterwards.
This shows that the number of non-unilateral coalition devia-
tion is at most equal to the number of different simple cycles
in the game graph, which is equal to m. Thus there is a c-
improvement path of length O(nm3).

Corollary 14. Every coordination game on an unweighted
open chain of cycles has a c-improvement path of length
O(nm3).

Proof. Any open chain of cycles can be converted to a closed
chain of cycles by adding one additional colour, c∗, and one
simple cycle with four nodes: one node from C1 different
from 11 and n1, one node from Cm different from 1m and
nm, two extra nodes between these two with c∗ as the only
colour available to them. It is easy to see that a coordination
game played on this closed chain of cycles has essentially the
same behaviour as a game played on the original open chain
of cycles. In particular there is a one-to-one mapping between
their c-improvement paths.

Finally, so far we assumed that we know the decomposition
of the game graph into a chain of cycle in advance. In general
the input may be an arbitrary graph and we would need to
find this decomposition first. Fortunately this can be done in
linear time.

Proposition 15. Checking whether a given graphG is a open
chain of cycles or closed chain of cycles, and if so partitioning
G into simple cycles C1, . . . , Cm can be done in O(|G|).

Proof. Assuming that G is a closed chain of cycles, the set
A = {1j |1 ≤ j ≤ m} is just the set of all nodes in G with
outdegree 2. denoted by B. We perform a depth first search
starting from any node of G and list the nodes with outdegree
2 as we encounter them. We identify the j-th node on this list
with 1j . We can then easily identify the remaining nodes in
each cycle Cj for 1 ≤ j ≤ m. Argument is similar for open
chains of cycles.

6 Simple cycles with cross-edges
In this section we consider coordination games whose un-
derlying graph forms simple cycles along with some addi-
tional “non-cyclic” edges between nodes. We say that the

1

{b, c}

2

{b, c}

3

{b}

4

{c}

5 {a}

6

{a, b}

7

{a, c}

8

{b, c}

Figure 3: A partition-cycle.

graph G = (V,E) is a simple cycle with cross-edges if V =
{1, 2, . . . , n} and the edge set E can be partitioned into two
sets Ec and Ep such that Ec = {i → i ⊕ 1 | i ∈ {1, . . . n}}
and Ep = E \ Ec. In other words, Ec contains all the cyclic
edges and Ep all the additional cross-edges in G.

The results in the previous section show that simple cycles
are quite robust in terms of maintaining the property of be-
ing weakly acyclic. Even with weighted edges and chains
of simple cycles, the resulting coordination games remain
weakly acyclic. In this section, we study the same question:
whether simple cycles with cross-edges are weakly acyclic.
We first show that if we allow arbitrary (unweighted) cross-
edges, then there are games that may not have a Nash equi-
librium (Example 16). We then identify a restricted class of
cycles with cross-edges for which the game is weakly acyclic.
Example 16. Consider the graph G′ which we obtain by
adding the following edges to the graph in Figure 1: 6 → 7,
4 → 8 and 5 → 9. Thus G′ defines a simple cycle:
1 → 4 → 8 → 2 → 5 → 9 → 3 → 6 → 7 → 1 along
with the cross-edges represented in Figure 1 (the nodes in G′
can be easily renamed if required to form the cyclic order-
ing 1 → 2 . . . 8 → 9). Note that in the resulting graph G′,
for any joint strategy, the payoff for node 7 is always 0 since
C(7) and C(6) are disjoint. Same holds for node 8 and node
9. Also, note that the best response for nodes 4, 5 and 6 is to
always select the same strategy as nodes 1, 2 and 3 respec-
tively. Therefore, to show that the game does not have a Nash
equilibrium, it suffices to consider the strategies of nodes 1, 2
and 3. We can denote this by the triple (s1, s2, s3). The joint
strategies are then the same as those listed in Example 4. It
follows that the game does not have a Nash equilibrium.
Partition-cycle. Let G = (V,E) be a simple cycle with
cross-edges where E = Ec ∪ Ep. We call G a partition-
cycle if (V,Ec) forms a simple cycle and the vertex set V can
be partitioned into two sets VT and VB such that VT , VB 6= ∅
and the following conditions are satisfied: Ep ⊆ VT × VB ,
• Ec ∩ (VT × VT ) forms a path in (V,Ec),
• Ec ∩ (VB × VB) forms a path in (V,Ec).

Example 17. The directed graph in Figure 3 is an exam-
ple of a partition-cycle. One possible partition of the vertex
set would be VT = {1, 2, 3, 4, 5} and VB = {6, 7, 8}. The
edge set Ec consists of the edges 1 → 2, 2 → 3, . . . , 8 → 1
whereas Ep = {1→ 6, 2→ 6, 3→ 8, 4→ 7}.

We first show that every coordination game whose underly-
ing graph is an unweighted partition cycle is weakly acyclic.
For the sake of simplicity, we fix the following notation: the



partition-cycle is given byG = (V,E) where V = {1, . . . n},
VT = {1, 2, . . . , k} and VB = {k + 1, k + 2, . . . , n}. If
Ep = ∅ then we get a simple cycle without cross-edges
on n nodes. For i ∈ VB , c ∈ C(i) and a joint strategy
s, let S(i, c, s) = {j ∈ VT | j → i and sj = c}. We
also define the set MC (i, s) = {c ∈ C(i) | |S(i, c, s)| ≥
|S(i, c′, s)| for all c′ ∈ C(i)}. Given a player i and a joint
strategy of the other players s−i let BR(i, s−i) denote the set
of best responses of player i to s−i.

Theorem 18. Every coordination game without bonuses on
an unweighted partition-cycle has an improvement path of
length O(n(n− k)).

Proof. Consider an initial joint strategy s0. We construct a
finite improvement path starting in s0 as follows. We proceed
around the cycle and consider the players 1, 2, . . . , n in that
order. For each player i, in turn, for the corresponding joint
strategy s, if si is not a best response to s−i, we update it to a
best response respecting the following property:

(P1) If si	1 ∈ BR(i, s−i) and there exists a c ∈ MC (i, s)
such that pi(c, s−i) = pi(si	1, s−i) then player i
switches to c (in this case c ∈ BR(i, s−i) as well).

Let s1 be the resulting joint strategy at the end of the first
round. It follows that the players 2, . . . , n are playing their
best response in s1. If s1 is a Nash equilibrium then the im-
provement path is constructed. If not then the only player
who is not playing its best response is player 1. This implies
that s1n 6= s0n. Let l1 be the least index in VB = {k+1, . . . n}
such that for all j ∈ {l1, . . . , n}, s1l1 6= s0l1 and s1l1 = s1n. Let
X = {l1, l1 + 1, . . . , n}. Note that X 6= ∅ since n ∈ X . We
repeatedly let players update to their best response strategies
in the cyclic order in multiple rounds. We can argue that in
each round |X| strictly increases. By definition, |X| ≤ |VB |
and therefore the improvement path constructed in this man-
ner eventually terminates in a Nash equilibrium.

In the second round starting at the joint strategy s1, we let
players update to their best response following the cyclic or-
der 1, 2, . . . k. Let s2 be the resulting joint strategy. Note
that in this sequence, if a player is not playing its best re-
sponse then the best response strategy is simply to switch
to the current strategy of its unique predecessor on the cy-
cle (recall that all nodes in VT have exactly one incoming
edge). Thus the only colour which is propagated is s1n. Now
starting at s2, let players update to their best response fol-
lowing the cyclic order k + 1, . . . n and let s3 be the re-
sulting joint strategy. If s3 is a Nash equilibrium then we
have a finite improvement path. If not, then player 1 is the
unique player not playing its best response and s3n 6= s1n.
We know that for all j ∈ X , s1j = s1n. By the above ar-
gument we also have |S(j, s1n, s3)| ≥ |S(j, s1n, s1)|. Thus
if s3n 6= s1n then for all j ∈ X , s3j = s3n. Now con-
sider the node l1 and let t and t′ be the joint strategies in
the improvement path constructed where t = (s1l1 , t−l) and
t′ = (s3l1 , t−l). For all m ∈ VT , we have tm = s2m(= s3m)

and |S(l1, s1l1 , s
3)| ≥ |S(l1, s1l1 , s

1)|. Thus if tl1 is not a best
response of player l1 then s3l1 = s3l1−1 and s3l1−1 6= s1l1−1.
Now let l2 be the least index in VB = {k + 1, . . . n} such

that for all j ∈ {l2, . . . , n}, s3l1 6= s1l1 and s3l1 = s3n. Let
X ′ = {l2, l2 + 1, . . . , n}. Clearly, l2 < l1 and therefore,
|X ′| > |X| and X ⊆ X ′. Let X := X ′ and we repeat this
process. In each successive round, |X| strictly increases and
by definition, |X| ≤ |VB |. Therefore, in at most |VB | rounds,
either we reach a Nash equilibrium or we reach a joint strat-
egy s′ where for all j,m ∈ VB , s′j = s′m. In this case we
go around in the cyclic order 1, 2, . . . , k and update players
to their best response. As earlier we can argue that the only
colour which is propagated is s′n and therefore this improve-
ment path terminates in a Nash equilibrium.

The above proof shows that starting from the second round,
the size of the set X strictly increases and we know that
|X| ≤ |VB | = n − k. Each time, in the worst case, we
might have to update all the nodes in the cyclic order. Thus in
the worst case the length of this improvement path is at most
O((n− k) · n)

From Theorem 5, we know that simple cycles even with
weighted edges are weakly acyclic. However, partition-cycles
with weighted edges need not always have a Nash equilibrium
(Example 19). On the other hand, we show in Theorem 20
that unweighted partition-cycles with bonuses remain weakly
acyclic. Thus Theorem 3 can be extended to partition-cycles.

Example 19. Consider the partition-cycle G given in Fig-
ure 3 and suppose we add weight 2 to edges 6 → 7 and
7 → 8. The resulting game does not have a Nash equilib-
rium. Note that in any joint strategy, nodes 3, 4 and 5 have to
choose the colour b, c and a respectively. Therefore, it suffices
to consider strategies of nodes 6, 7, 8, 1 and 2. Also note that
in any joint strategy s, the best response for players 1 and 2
is s8 (the strategy of player 8 in s). Thus we can also restrict
attention to joint strategies s in which s1 = s2 = s8. So let us
denote a joint strategy s by the triple (s6, s7, s8). Below we
list all such joint strategies and we underline a strategy that
is not a best response: (a, a, b), (a, a, c), (a, c, b), (a, c, c),
(b, a, b), (b, a, c), (b, c, b) and (b, c, c).

Theorem 20. Every coordination game with bonuses on
an unweighted partition-cycle has an improvement path of
length O(kn(n− k)).

Proof sketch. The main idea is to enforce the players to up-
date their strategy based on a specific priority over colours
induced by the bonuses. For each node in VT to satisfy the
priority of updates over colours induced by the bonuses, we
might have to cycle through each node and construct the im-
provement path as given in the proof of Theorem 18. Thus in
the worst case, the length of the improvement path which is
constructed is O(k · (n − k)n). Details are provided in the
appendix.

Note that Example 19 shows that with just two weighted
edges between nodes in VB , it is possible to construct games
which may not have a Nash equilibrium. We now show that
if the weights are only present on edges between nodes in
VT or on the cross-edges Ep then the resulting game remains
weakly acyclic. If we allow bonuses on nodes then we can
add weights to the cross-edges Ep and the resulting game re-
mains weakly acyclic. On the other hand, from Example 4 we



already know that if we allow both weights and bonuses, even
without cross-edges, there are graphs in which the resulting
game need not have a Nash equilibrium.

Given a partition cycleG = (VT ∪VB , Ec∪Ep), let ET =
(VT × VT )∩Ec. That is, the set ET consists of all the cyclic
edges between nodes in VT .
Theorem 21. Every coordination game without bonuses on
a partition-cycle with weights on edges in ET ∪Ep is weakly
acyclic.

Proof. Let G = (VT ∪ VB , Ec ∪Ep) be a partition-cycle and
ET = (VT × VT )∩Ec. We first show that for each weighted
edge in Ep we can add a set of unweighted edges and obtain
a new partition-cycle G′ such that every improvement path in
G′ can be converted into an improvement path in G. Let u→
v be an edge in Ep with weight w. Note that by definition
of G, u ∈ VT and u ∈ VB . Let x → u and u → y be the
cyclic edges in Ec associated with the node u. We replace
the node u with w new nodes u1, . . . , uw and for all j ∈
{1, . . . , w} we set C(uj) = C(u). We also add the following
unweighted edges to the edge set E. For all j ∈ {1, . . . , w −
1}, uj → uj+1 ∈ Ec, uj → v ∈ Ep, uw → v ∈ Ep and
{x → u1, uw → y} ⊆ Ec. In any joint strategy s, the best
response of nodes u2, . . . uw would be to choose the same
colour as u1. Which implies the following: the node v had an
incoming edge of weight w supporting the colour su in G iff
in the modified graph in any joint strategy in which the nodes
u2, . . . , uw are playing their best response, the node v has w
edges supporting the colour su.

The proof of Theorem 18 shows that it is possible to con-
struct a finite improvement path by updating players in the
cyclic order. A crucial property which was used is that in
each successive rounds, while updating players in VT , the
only colour which is propagated is sn, the colour chosen by
node n in the end of the previous round. Even if the edges
in ET are weighted, the property continues to hold since the
best response for each node i ∈ VT is still to choose the same
colour as it unique predecessor i 	 1 on the cycle, provided
the colour is in C(i). Note that the edges in Ec \ ET are un-
weighted. Thus by using a similar argument as in the proof
of Theorem 18, we can conclude that the game is weakly
acyclic.

Theorem 22. Every coordination game with bonuses on a
partition-cycle with weights on edges inEp is weakly acyclic.

Proof. Each weighted edge in Ep can be converted into a
set of unweighted edges such that the resulting graph G′ is
still a partition-cycle. From every finite improvement path
in the coordination game whose underlying graph is G′, we
can construct a finite improvement path in G. Thus by Theo-
rem 20, the result follows.

Finally, we assumed that the decomposition and ordering
of the nodes in the input partition-cycle graph is given in ad-
vance. The decomposition can be computed in linear time as
well.
Proposition 23. Checking whether a given graph G is a
partition-cycle and if so finding its VT , VB and suitable or-
dering on these subsets of nodes can be done in O(|G|).

1 {a, b, c}

2
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3
{a, b, c}
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6 {a, b, c}

7 {a, b, c}8{a, b, c}

9{a, b, c}
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Figure 4: A coordination game with trivial strong equilibria
unreachable from the given initial joint strategy.

Proof. Note that the ordering of G = (V,E) we are looking
for defines a Hamiltonian path inGwith particular properties.
We start by selecting only the nodes in G with outdegree 1;
these are all the nodes that can potentially be in VB . Next,
we look at the graph G′ = (VB , E ∩ VB × VB). First, we
remove any edges fromG′ that form a cycle using, e.g. depth-
first search. We then topologically sort the resulting DAG.
We obtain several disjoint pathsB1, . . . , Bk as candidates for
VB . We assume that there is at least one cross-edge in G,
because otherwise the problem is trivial. We check to which
of these disjoint paths this cross-edge leads to and we set that
path as VB and the rest of the nodes are set as VT . The order
on VB is given by the topological order. We then look at
G′′ = (VT , E ∩ VT × VT ). If G′′ has a cycle then G is a not
a partition-cycle. Otherwise, topologically sorting G′′ gives
us the order of nodes in VT . Finally, it is straightforward to
test whether VT and VB satisfy the remaining requirements
for the graph G to be a partition-cycle.

7 Conclusions
We presented natural classes of graphs for which coordination
games have improvement or c-improvement paths of poly-
nomial size. We also showed that for most natural exten-
sions of these classes, the resulting coordination game may
not even have a Nash equilibrium. Note that although we de-
fined bonuses as natural numbers, our results also hold for
any integer bonuses, because after increasing all bonuses by
a fixed amount, all players’ incentives stay the same.

In general, local search may not be an efficient technique
to find a Nash equilibrium or a strong equilibrium in coor-
dination games even when the game graph is strongly con-
nected. In fact, a coordination game can have trivial strong
equilibria which cannot be reached from some of its ini-
tial joint strategies. For example, the game in Figure 4 has
three trivial strong equilibria in which all players pick the
same colour. However, every improvement or c-improvement
path from the initial joint strategy (given by the underlined
strategies) is infinite. Moreover, although the game graph is
weighted, the weighted edges can easily be replaced by un-
weighted ones just by adding auxiliary nodes (see Example
24 in the appendix). Therefore, the non-existence of a finite



improvement or c-improvement path in coordination games
even for strongly connected unweighted graphs does not im-
ply the non-existence of Nash equilibria or strong equilibria.

In proving our results, we used various generalised po-
tential techniques, and exploited structural properties of the
classes of graphs studied. It would be interesting to see
whether there is a common progress measure that works for
all the classes of graphs that we consider as well as for more
general ones. In particular, we conjecture that coordination
games on unweighted graphs with indegree at most two are c-
weakly acyclic. Extensive computer simulations seem to sup-
port this conjecture. This class of graphs strictly generalises
the unweighted open chains of cycles and closed chains of
cycles that we showed to be c-weakly acyclic. We also leave
open the existence of finite c-improvement paths in weighted
open chains of cycles and partition-cycles. Although they
seem likely to exist, unicoloured simple cycles introduced by
coalition deviations from Nash equilibria can disappear when
trying to reach a new Nash equilibrium after them, so a de-
tailed analysis of the interplay between these two steps is re-
quired to prove their c-weak acyclicity.
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Appendix A – Sequence of simple cycles
Theorem 9. Every coordination game on an unweighted
open chain of cycles has an improvement path of length
O(nm2).

Proof. Let {Cj | j ∈ {1, 2, . . . ,m}} be the set of simple cy-
cles which constitute the open chain of cycles N . The maxi-
mum in-degree of any node in N is two and in each Cj , there
are at most two nodes u and v with in-degree two with one of
the incoming edges x → u from a node x in Cj+1 if j < m
and the other y → v from a node y in Cj−1 if j > 1. Given
a joint strategy s, we can view these external incoming edges
into Cj as bonuses to the nodes u and v. That is, βs

j (u, c) = 1
if sx = c and 0 otherwise, βs

j (v, c) = 1 if sy = c and 0 other-
wise. For all i ∈ {1j , . . . , nj}\{u, v}, for all c, βs

j (i, c) = 0.
For each j ∈ {1, 2, . . . ,m} and a joint strategy s, consider

the cycle Cj along with the bonus βs
j . This induces a coor-

dination game on a (unweighted) simple cycle with bonuses.
By Theorem 3 such a coordination game is weakly acyclic.

Given a joint strategy s, for j ∈ {1, . . . ,m}, call the node
1j a break point in s if the following two conditions are satis-
fied:

(C1) for all k ≤ j, for all i ∈ {1k, . . . nk}, si is a best re-
sponse to s−i,

(C2) s1j = snj .

For a joint strategy s, let guard(s) be the largest j ∈
{1, . . . ,m− 1} such that 1j is a break point in s, if no such j
exists then guard(s) = 0.

Let s0 be an arbitrary joint strategy in the game whose un-
derlying graph is N . We construct a finite improvement path
inductively as follows. Initially, the improvement path con-
sists of the joint strategy s0. Suppose we have constructed
an improvement path ρ′ such that last(ρ′) = s′. Choose the
least j ∈ {1, . . . ,m} such that there is a node in Cj which is
not playing its best response in s′. Apply Theorem 3 to the
game induced by Cj and βs′

j to extend the improvement path.
In other words, the procedure works as follows: Suppose

there is a node in C1 which is not playing its best response in
s0. Start with the coordination game induced by C1 and βs

1 .
By Theorem 3, there is a finite improvement path that termi-
nates in a joint strategy s1 such that for all i ∈ {11, . . . n1},
s1i is a best response to s1−i.

Now suppose we have constructed a partial improvement
path ρ where last(ρ) = s and let j be the largest index

j ∈ {1, . . .m − 1} such that for all k ≤ j, i ∈ {1k, . . . nk},
si is a best response to s−i. Consider the coordination game
induced by the Cj+1 and βsj

j+1. By Theorem 3, there is a fi-
nite improvement path that terminates in a joint strategy sj+1

such that for all i ∈ {1j+1, . . . nj+1}, sj+1
i is a best response

to sj+1
−i . Now since the two cycles Cj and Cj+1 share a node,

i.e. 1j = kj+1. It is possible that in the joint strategy sj+1,
the node 2j is not playing its best response any longer. To
avoid multiple subscripts, let us denote the node 2j by 2, 1j

by 1. So we have that sj+1
2 is not a best response to sj+1

−2 .
Note that by assumption the node 2j was playing its best re-
sponse in the joint strategy sj . And the only node in Cj that
could possibly change its strategy in sj+1 is 1j . Assume that
node 2 has a unique predecessor (or the in-degree of node 2
is 1). Then we also have, sj+1

1 6= sj+1
2 , sj+1

1 ∈ C(sj+1
2 ) and

p2(s
j+1
1 , sj+1

−2 ) ≥ p2(c, sj+1
−2 ) for all c ∈ C(2j). Let the node

2j switch to the colour sj+1
1 . We then update the nodes in the

cyclic order in Cj successively if they are not playing their
best response. We then do the same procedure for cycles in
the order Cj−1, . . . , Cguard(sj+1).

Now suppose in this sequence of updates the only
colour which is propagated is sj+1

1 . Then we have
reached a joint strategy in which all nodes on cycles
Cj+1, Cj , . . . , Cguard(sj+1) are playing their best response.
So the number of cycles playing their best response has
strictly increased. If while propagating down the sequence
Cj−1, . . . , C1 a new colour is introduced then note that this
new colour can only be introduced by a node of indegree
2. Suppose the first instance in the improvement path a new
colour is introduced is by node 1l for l < j. Let s1 be the
joint strategy before node (k − 1)l+1 updates to its best re-
sponse and s2 be the joint strategy before node 1l changes to
the colour c 6= sj+1

1 (which is its best response). Recall that
the node 1l is same as the node kl+1 for some k ∈ {1, . . . , n}.
Since we proceed in the cyclic order in Cl, we know that in
s1 node 1l was playing a best response where as by assump-
tion in s2 node 1l is not. The only difference between s1 and
s2 is in the strategy of node (k − 1)l+1 and by assumption,
the strategy of node (k − 1)l+1 in s2 is same as sj+1

1 . Since
c 6= sj+1

1 , c 6= s21l and c is a best response for node 1l to
the joint strategy s2−1l , it implies that s2nl = c. Let s3 be the
joint strategy obtained from s2 by having s31l = c. This im-
plies that node 1l satisfies condition (C2) in the joint strategy
s3. If it also satisfies condition (C1) then we have identified
a break point. It also follows that guard(s3) > guard(sj+1)
and we have strictly reduced the number of cycles we need to
consider.

If condition (C1) is not satisfied in s3 then the only node
not on its best response in Cl is 2l. Apply the same prop-
agation and let 1k be the last node in this sequence which
introduces a new colour c′ and let s4 be the joint strategy
obtained after node 1k switches. By the same argument
it holds that condition (C2) is satisfied by node 1k in the
joint strategy s4. Now update the nodes in the cyclic or-
der and in the sequence Ck, Ck−1, . . . , Cguard(sj+1). It can



be verified that the only colour propagated is c′. Let s5 be
the resulting strategy in which all the nodes in the cycles
Ck, Ck−1, . . . , Cguard(sj+1) are playing their best response.
This implies that the node 1k is a break point in s5. Thus we
have guard(s5) > guard(sj+1) and we can repeat the same
procedure inductively for the cycles {Cguard(s5)+1, . . . , Cm}.

The improvement path constructed in Theorem 3 is of
lengthO(n). Each time the number of cycles playing the best
response increase, a single colour can be propagated down the
entire chain of cycles. In the worst case, the value of the guard
can increase by 1 at the end of each phase. Thus in the worst
case, the length of the improvement path that is constructed
is O(nm2).

Lemma 1. In the open chain of cyclesN consisting of cycles
C1, . . . , Cm, if for all j ∈ {1, 2, . . . ,m−1} we have wj

1 > wj
2

then N is weakly acyclic.

Proof. As in the proof of Theorem 9, given a joint strategy s,
we can view the external incoming edges into Cj as bonuses
to the corresponding nodes. The only difference in this case
is that the value of the bonus instead of being 1, is the weight
of the corresponding edge. Let βs

j denote this bonus function.
The cycle Cj along with βs

j defines a coordination game on a
weighted simple cycle with at most two nodes having non-
trivial bonuses. By Theorem 5, such a coordination game is
weakly acyclic.

Let s0 be an arbitrary joint strategy in the game whose un-
derlying graph is N . We construct a finite improvement path
inductively as follows. Initially, the improvement path con-
sists of the joint strategy s0. Suppose we have constructed
an improvement path ρ′ such that last(ρ′) = s′. Choose the
least j ∈ {1, . . . ,m} such that there is a node in Cj which is
not playing its best response in s′. Apply Theorem 5 to the
game induced by Cj and βs′

j to extend the improvement path.
Since wj

1 > wj
2 for all j, we can show that the partial im-

provement path ρ that is constructed in this manner satisfies
the following invariant:

(I) Let last(ρ) = s and let j be the largest index j ∈
{1, . . .m− 1} such that for all k ≤ j, i ∈ {1k, . . . nk},
si is a best response to s−i. If s1k 6= snk then snk 6∈
C(1k).

The invariant asserts that if in the strategy s, the choice
of the nodes 1k and its unique predecessor nk in Ck are not
the same then the colour chosen by nk is not in the available
colours for 1k.

To see how the above process works, suppose there is a
node in C1 which is not playing its best response in s. Start
with the coordination game induced by C1 and βs

1 . By Theo-
rem 5, there is a finite improvement path that terminates in a
joint strategy s1 such that for all i ∈ {11, . . . n1}, s1i is a best
response to s1−i. Since w1

1 > w1
2 the invariant (I) holds for

the node 11.
Now suppose we have constructed a improvement path

ρ where last(ρ) = s and let j be the largest index j ∈
{1, . . .m−1} such that for all k ≤ j, i ∈ {1k, . . . nk}, si is a
best response to s−i and the invariant (I) holds. Consider the

coordination game induced by the Cj+1 and βsj

j+1. By The-
orem 5, there is a finite improvement path that terminates in
a joint strategy sj+1 such that for all i ∈ {1j+1, . . . nj+1},
sj+1
i is a best response to sj+1

−i . Now since the two cycles
Cj and Cj+1 share a node, i.e. 1j = kj+1. It is possible that
in the joint strategy sj+1, the node 2j is not playing its best
response any longer. To avoid multiple subscripts, let us de-
note the node 2j by 2, 1j by 1, nj by n and (k − 1)j+1 by
k − 1. So we have that sj+1

2 is not a best response to sj+1
−2 .

Note that by assumption the node 2j was playing its best re-
sponse in the joint strategy sj . And the only node in Cj that
could possibly change its strategy in sj+1 is 1j . If 1j changes
its strategy then this means that sj+1

1 6= sj+1
n . By invariant

(I), this means sj+1
n 6∈ C(1) and so sj+1

1 = sj+1
k−1. We also

have, sj+1
1 6= sj+1

2 , sj+1
1 ∈ C(sj+1

2 ) and p2(s
j+1
1 , sj+1

−2 ) ≥
p2(c, s

j+1
−2 ) for all c ∈ C(2j). Let the node 2j switch to the

colour sj+1
1 . We then update the nodes in the cyclic order in

Cj successively if they are not playing their best response. It
can be verified that for every node which is not playing its
best response, the colour sj+1

1 is a best response. Therefore
the only colour which is propagated is sj+1

1 . So this sequence
of updates terminate in a joint strategy in which all the nodes
in Cj and Cj+1 is playing their best response.

In this resulting joint strategy it could be that the node 2j−1
is not playing the best response (since the node 1j−1 = kj

switched). Again by the same reasoning, and by invariant (I),
we can argue that in this case we can update the strategies of
the players such that only the colour sj+1

1 is propagated. Con-
tinuing in this manner we arrive at a joint strategy in which all
nodes on cycles C1, . . . , Cj+1 are playing their best response.
Since wj+1

1 > wj+1
2 the invariant (I) continues to hold. In

case the weights on the incoming edges are not distinct, then
depending on the initial joint strategy s0 it is possible that a
new colour is introduced when we propagate down the chain
Cj , . . . , C1. In this case we can identify break points and use
a similar technique as done in the proof of Theorem 9 to iden-
tify a progress measure.

Theorem 10. Every coordination game on a weighted open
chain of cycles has an improvement path of length O(nm3).

Proof. LetN be the open chain of cycles consisting of the se-
quence of weighted cycles C1, . . . , Cm.to combine A blockBj

is a sequence of simple cycles in N . We can represent N as
a sequence of blocks which we define inductively as follows:
The block B1 consists of the sequence of cycles C1, . . . , Cl
such that for all k ∈ {1, . . . , l − 1}, wk

1 > wk
2 or for all

k ∈ {1, . . . , l}, wk
1 < wk

2 .
Suppose we have inductively constructed the block Bj and

let Cp be the last cycle in Bj . Then Bj+1 consists of the se-
quence of cycles Cp+1, . . . , Cq such that one of the following
conditions hold,

• for all k ∈ {p + 1, . . . , q − 1}, wk
1 > wk

2 and if q 6= m
then wq

1 < wq
2,

• for all k ∈ {p + 1, . . . , q − 1}, wk
1 < wk

2 and if q 6= m
then wq

1 > wq
2,



Thus the open chain of cycles consisting of the sequence
of weighted cycles can now be represented as a sequence of
blocks B1, . . . , Bl. The pair of blocks Bi and Bi+1 share a
node in common. Let s0 be an arbitrary joint strategy in the
game whose underlying graph isN . We construct a finite im-
provement path inductively as follows. Initially, the improve-
ment path consists of the joint strategy s0. Suppose we have
constructed an improvement path ρ′ such that last(ρ′) = s′.
Choose the least j ∈ {1, . . . , l} such that there is a node in the
block Bj which is not playing its best response in s′. Let Bj

consists of the cycles Cp, . . . , Cq . If for all k ∈ {p, . . . , q−1},
wk

1 > wk
2 then apply Lemma 1 to the sequence Cp, . . . , Cq

with the possibility of bonus to a node in Cp and Cq to extend
the improvement path. If for all k ∈ {p, . . . , q−1}, wk

1 < wk
2

then apply Lemma 2 to extend the improvement path.
The proof that this procedure constructs a finite improve-

ment path is similar to the proof of Theorem 9. Suppose
we have constructed a partial improvement path ρ where
last(ρ) = s and j is the largest index such that all nodes
in blocks B1, . . . , Bj are playing the best response in s.
Consider the block Bj+1, by applying either Lemma 1 or
Lemma 2 (depending on the case), we can extend the im-
provement path to ρ1 such that in s1 = last(ρ1). Let us as-
sume that the blockBj+1 consists of the cycles Cp+1, . . . , Cq .
Then Bj and Bj+1 share a common node, 1p. If the strategy
of the node 1p in s and s1 is the same, then in s1 we have
strictly increased the number of blocks playing the best re-
sponse. Suppose s11p 6= s1p , then there are two cases to anal-
yse. Suppose in the block Bj , for all cycles Ck, wk

1 > wk
2 .

Then we can argue that the only colour which is propagated
is s11p and therefore, after applying Lemma 1, the number of
blocks playing the best response increases. Suppose in the
block Bj , for all cycles Ck, wk

1 < wk
2 . By the procedure

explained in Lemma 2 we can reach a joint strategy s2 such
that all nodes in Bj is playing their best response. Now if
s21p = s11p then all the nodes in Bj+1 is also playing their
best response and therefore, the number of blocks playing the
best response increases. Suppose s21p 6= s11p then it has to be
the case that s21p = s2np . Note that by definition of blocks,
wp

1 > wp
2 . Like in the proof of Theorem 9 we can define 1p

to be a break-point in s2 since wp
1 > wp

2 , s21p = s2np and all
nodes in Bj are playing their best response. Similar to the
proof of Theorem 9 we can argue that after each such phase,
either the number of block playing the best response strictly
increases or the value of the maximal break point strictly in-
creases.

The improvement path constructed by applying Lemma 1
and Lemma 2 can be of length O(nm2). While composing
this path we might have to propagate colours down the chain.
However, we can argue that we always make progress by at
least one block. Thus in worst case, the length of the im-
provement path can be O(nm3).

Theorem 11. Every coordination game on an unweighted
closed chain of cycles has an improvement path of length
O(nm2).

Proof. Let {Cj | j ∈ {1, 2, . . . ,m}} be the set of simple
cycles which constitute the graph C. In each Cj , there is ex-

actly two nodes with indegree two. By the definition of C,
the simple cycles C1 and Cm share one node 1m = k1 for
some k ∈ {1, . . . n}. Let s0 be an arbitrary joint strategy in
the game whose underlying graph is C. The idea of the proof
is the view the sequence of cycles C1, . . . , Cm−1 as an open
chain of cycles. By Theorem 9, there is a finite improvement
path starting at s0 and terminating in s1 such that for all nodes
in cycles C1, . . . , Cm−1 are playing their best response in s1.
Now we update the strategies of nodes in Cm in the cyclic
order, let the resulting joint strategy be s2 if the nodes 1m

and 1m−1 choose the same strategy in both s1 and s2 then we
have constructed the finite improvement path.

Suppose s21m−1 6= s11m−1 and s21m−1 = s2(k−1)m (where
the nodes 1m−1 and km are the same). In s2 the node
2m−1 may no longer be playing the best response. We pro-
ceed in the reverse order and update the nodes in the cycles
Cm−1, Cm−2, . . . , C1, Cm. If no new colour is introduced and
the only colour which is propagated is s21m−1 then the im-
provement path terminates after updating nodes in Cm. If a
new colour c′ 6= s2(k−1)m is introduced then let 1q be the first
time this happens while updating players in the order of cy-
cles Cm−1, Cm−2, . . . , C1 (note that a new colour can be intro-
duced only by a node with indegree 2). Let s3 be the result-
ing joint strategy, then due to the order of scheduling nodes,
it follows that s3(k−1)q+1 6∈ C(1q) and s31q = s3nq . Each time
a new colour is introduced, for the node involved, the above
condition is satisfies. In other words, the node forms a break
point for that particular joint strategy as defined in the proof
of Theorem 9. The important observation is that, since the
new colour of node 1q is supported by the node nq , the pay-
off for 1q is at least 1 and therefore while we update nodes in
the reverse order of cycles, if no more new colours are intro-
duced, then the only colour which is propagated further down
the chain is s31q and then the path terminates at (k − 1)(q−1).
Other new colours could be introduced in this propagation.
However, the node which introduces the new colour is then
a break point. Let 1r be the last node where a new colour is
introduced and the resulting joint strategy be s4. This implies
that s4(k−1)r+1 6∈ C(1r) and s31r = s3nr . Now we schedule
the cycles Cr, Cr−1, . . . Cq+1. The only colour which is prop-
agated is the colour of 1r and the node 1q does not update
its strategy since the colour chosen by 1q and nq is the same.
So after this, all nodes in the cycles Cr, Cr−1, . . . Cq+1 are on
their best response. Let the resulting joint strategy be s5. It
could still be that 2r is not on its best response (since 1r up-
dated the colour to a new colour). We now update the nodes
in the order of cycles Cr, Cr+1, . . . , Cq , this propagates the
colour s41r (= s51r ). If there is a node 1l such that the colour
chosen by 1l is same as that of nl and s41r 6∈ C(1l) then the
propagation stops. If not, then the same colour s41r is propa-
gated and the improvement path terminates at the cycle Cr+1.

If s21m−1 = s11m−1 it could still be that s211 6= s111 . In
this case we update the players in the increasing order of cy-
cles C1, . . . Cn and using a similar argument as above, we can
show that a finite improvement path can be constructed.

Theorem 13. Every coordination game on an unweighted
closed chain of cycles has a c-improvement path of length



O(nm3).

Proof. Let s be a Nash equilibrium that this game reaches
via an improvement path of lengthO(nm2) as constructed in
Theorem 11. If s is a strong equilibrium then we are done.
Otherwise there exists a coalition K with a profitable devi-
ation, s′, from s. Due to Lemma 2, the coalition K has to
include at least one simple cycle, C, switching to the same
colour in s′. This can be one of the cycles Ci or one of the
two cycles going around the whole game graph containing
the set of nodes A = {1j |1 ≤ j ≤ m}.

Note that s′ may not be a Nash equilibrium but because
the game is weakly acyclic there is a finite improvement path
which leads to a Nash equilibrium s′′ from s′. We now show
that s′′|C = s′|C . Let s∗ be a strategy profile along the path
from s′ to s′′ when for the first time a node, i, from C switches
its colour. We have pi(s∗) ≤ 1 because i has at most two
incoming edges and one of them is from a node in C. At the
same time, pi(s∗) ≥ pi(s′)+ 1 ≥ pi(s)+ 2 ≥ 2, because the
deviation of i to s∗i is assumed to be profitable and so is the
deviation, as part of coalition K, to s′; a contradiction.

Now again, either s′′ is a strong equilibrium, and we are
done, or there exists a new coalition K ′ with a profitable de-
viation, s′′′, from s′′. We claim that either C = A or no node
from C can be part of K ′. Any node i ∈ C \ A has only one
incoming edge and so node i cannot be part of K ′ and im-
prove any further from pi(s

′′) = 1. Moreover, any successor
of i in C cannot be part of K ′ either, because it would need to
switch to a different colour than i and so cannot improve his
payoff of 1 in s′′. It follows that either C ∩K ′ = ∅ or C \A is
empty, which implies C = A. In the latter case, every simple
cycle, which has to be part of coalition K ′, has a nonempty
intersection with A. Such a node, i, would need to improve
its payoff to 2, because pi(s′′) ≥ 1, so both of its predeces-
sors have to belong to K ′. In particular, its predecessor in
A. It follows that A ⊆ K ′. Furthermore, all predecessors of
nodes in A should belong to K ′, but this includes all nodes
of the game. Therefore, all nodes in the game have to switch
to the same colour which would form a strong equilibrium.
It follows that there can be at most one profitable coalition
deviation after coalition C = A deviates. So we can safely
ignore this special case in the analysis below and assume that
always C ∩K ′ = ∅.

Finally, we construct a finite c-improvement path ρ = s0,0,
s1,0, s1,1, . . . , s1,k1 , s2,0, s2,1, . . . , s2,k1 , s3,0, . . . as follows.
It starts with s0,0 = s and we stipulate k0 = 0. For any
j ≥ 1, strategy profile sj,0 is a result of a profitable deviation
by any coalition from sj−1,kj−1 . If there is no such devia-
tion the path is finished and sj−1,kj−1 is a strong equilibrium.
Otherwise, although sj,0 may not be a Nash equilibrium, the
game is weakly acyclic and thanks to Theorem 11 there exist
an improvement path sj,1, sj,2, . . . , sj,kj of length O(nm2)
which reaches a Nash equilibrium sj,kj . We know that in
each sj,0 at least one simple cycle changes colour and none
of its nodes change colour afterwards. This shows that the
number of non-unilateral coalition deviation is at most equal
to the number of different simple cycles in the game graph,
which is equal to m. Therefore, ρ is a c-improvement path of
length O(nm3).

Appendix B – Partition cycle
Theorem 20. Every coordination game with bonuses on
an unweighted partition-cycle has an improvement path of
length O(kn(n− k)).

Proof. Consider the initial joint strategy s0. We construct a
finite improvement path starting in s0 by proceeding in the
cyclic order and updating players’ strategies. The argument
that this results in a finite improvement path, is very simi-
lar to the proof of Theorem 18. The main idea is to enforce
the players to update their strategy based on a specific pri-
ority over colours induced by the bonuses. Let us define
MB(i) = {c ∈ C(i) | for all c′ ∈ C(i), β(i, c) ≥ β(i, c′)}
and Max (i, s) = {c ∈ C(i) | for all c′ ∈ C(i), β(i, c) +
S(i, c, s) ≥ β(i, c′) + S(i, c′, s)}.

Given a partial improvement path ρ with last(ρ) = s, if si
is not a best response to s−i and i ∈ VT , then we update the
strategy of i such that it satisfies the following property (P2):

(P2) if si	1 ∈ BR(i, s−i) and there exists a c ∈ MB(i) such
that pi(c, s−i) = pi(si	1, s−i) then player i switches to
c (clearly, in this case c ∈ BR(i, s−i) as well).

For i ∈ VB , we update the strategy of i such that it satisfies
the property (P3):

(P3) If si	1 ∈ BR(i, s−i) and there exists a c ∈ Max (i, s)
such that pi(c, s−i) = pi(si	1, s−i) then player i
switches to c (clearly, in this case c ∈ BR(i, s−i) as
well).

For all i ∈ VT , if in an improvement path, player i updates
its strategy then by (P2), it switches to a colour in MB(i).
Due to (P2) and the fact that i has a unique incoming edge, we
can verify that in any subsequent joint strategy s1, if i updates
its strategy to a colour c′ then it has to be that s1i	1 = c′ and
c′ ∈ MB(i). Thus we can assume that after some finite prefix
of the improvement path constructed by updating players in
the cyclic ordering, for all nodes i ∈ VT , i is choosing a
strategy in MB(i).

Let s2 be the resulting joint strategy. Consider the set
X constructed at this stage as defined in the proof of The-
orem 18. Let X = {l1, . . . n}. By the construction of X , we
have that for all j, k ∈ X , s2j = s2k. By definition of the setX ,
all the nodes j ∈ X have updated its strategy, and therefore,
they conform to property (P3). For a node j ∈ X , let s2j = c1.
From (P3), it follows that for all j ∈ {l1 + 1, . . . n}, for all
c2 ∈ C(j), β(j, c1)+S(j, c1, s2)+1 > β(j, c2)+S(i, c2, s2).
For node l1, if s2l1−1 6= s2l1 then s2l1 ∈ Max (l1, s

2) otherwise,
s2l1 satisfies the same property as above. This implies that in
the next cyclic round of updates, for each node j ∈ X , either
j updates to the same strategy as its unique predecessor on the
cycle or j is already on a best response strategy which implies
that the resulting joint strategy is a Nash equilibrium. Thus
following the argument given in the proof of Theorem 18 a
finite improvement path can be constructed.

Example 24. Consider the coordination game graph in Fig-
ure 4. This game graph is strongly connected and in fact
there are only three edges missing to turn it into an undi-
rected graph. Also, although the game graph is weighted, the



weighted edges can easily be replaced by unweighted ones
just by adding auxiliary nodes without affecting the strong
connectedness of the graph. At the same time, the behaviour
of the game on this new unweighted graph will essentially
be the same as on the original one. Note that coordination
games on undirected unweighted graphs are known to have
FIP [2]. If we do not require strong connectedness of the
game graph, this example can be slightly simplified by re-
moving nodes A, B, C and turning bidirectional edges from
nodes 4–9 into outgoing edges.

First, let us notice that nodes A, B, and C in this game
would never like to switch their colour; all of them already
have the maximum possible payoff of 5. This implies that
nodes 5 – 9 will never change their colour either, e.g. node 5
has at least payoff of 2 for picking b and no matter the colour
node 1 chooses, node 5 will never be better off switching to
a different colour. Therefore, the only nodes that can ever
switch colours are nodes 1–3.

Now, let us analyse the initial colouring in Figure 4. The
payoff of node 2 is 4 and his maximum possible payoff is 5.
However, he can only get payoff 5 if he switches to c and
node 1 switches to c. The latter is not possible because node 1
gets payoff of at most 2 for picking c while picking a gives him
at least 3. In conclusion, node 2 cannot be part of a deviating
coalition in this colouring. Node 3 will not change his colour
either because he gets payoff 3 while the other colours give
him payoff 2. Therefore, the only node which can switch in
any coalition is node 1 and his only profitable deviation is
switching to colour b.

Once this switch happens, he gets payoff 4 in the new
colouring, while his maximum payoff is 5. It can be argued
as before that node 1 cannot be part of a deviating coalition
in this new colouring. However, there are two possible devi-
ating coalitions: either node 2 unilaterally switches to colour
c, or nodes 2 and 3 switch to colour c together. In the for-
mer, the game will be in essentially the same situation as with
the initial colouring in Figure 4; one just need to rotate the
colours, numbers and the game to the “left”, i.e. colour b is
a and node 2 is node 1 etc. While in the latter, the games will
be in the situation essentially the same as in the colouring
encountered after the first switch from the initial colouring.

It is easy to see now that eventually this game arrives at
the initial colouring and the whole process will repeat for-
ever. Therefore, this game is not weakly acyclic nor c-weakly
acyclic. On the other hand, it has three trivial strong equilib-
ria in which all players pick the same colour.


