47,159 research outputs found

    Exact value for the average optimal cost of bipartite traveling-salesman and 2-factor problems in two dimensions

    Get PDF
    We show that the average cost for the traveling-salesman problem in two dimensions, which is the archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend a result already known in one dimension where exact solutions are avalaible. The recently determined average cost for the assignment when the cost function is the square of the distance between the points provides therefore an exact prediction EN‟=1π log⁥N\overline{E_N} = \frac{1}{\pi}\, \log N for large number of points 2N2N. As a byproduct of our analysis also the loop covering problem has the same optimal average cost. We also explain why this result cannot be extended at higher dimensions. We numerically check the exact predictions.Comment: 5 pages, 3 figure

    Mean field and corrections for the Euclidean Minimum Matching problem

    Full text link
    Consider the length LMMEL_{MM}^E of the minimum matching of N points in d-dimensional Euclidean space. Using numerical simulations and the finite size scaling law =ÎČMME(d)N1−1/d(1+A/N+...) = \beta_{MM}^E(d) N^{1-1/d}(1+A/N+... ), we obtain precise estimates of ÎČMME(d)\beta_{MM}^E(d) for 2≀d≀102 \le d \le 10. We then consider the approximation where distance correlations are neglected. This model is solvable and gives at d≄2d \ge 2 an excellent ``random link'' approximation to ÎČMME(d)\beta_{MM}^E(d). Incorporation of three-link correlations further improves the accuracy, leading to a relative error of 0.4% at d=2 and 3. Finally, the large d behavior of this expansion in link correlations is discussed.Comment: source and one figure. Submitted to PR

    The statistical mechanics of multi-index matching problems with site disorder

    Get PDF
    We study the statistical mechanics of multi-index matching problems where the quenched disorder is a geometric site disorder rather than a link disorder. A recently developed functional formalism is exploited which yields exact results in the finite temperature thermodynamic limit. Particular attention is paid to the zero temperature limit of maximal matching problems where the method allows us to obtain the average value of the optimal match and also sheds light on the algorithmic heuristics leading to that optimal matchComment: 11 pages 11 figures, RevTe

    Selberg integrals in 1D random Euclidean optimization problems

    Full text link
    We consider a set of Euclidean optimization problems in one dimension, where the cost function associated to the couple of points xx and yy is the Euclidean distance between them to an arbitrary power p≄1p\ge1, and the points are chosen at random with flat measure. We derive the exact average cost for the random assignment problem, for any number of points, by using Selberg's integrals. Some variants of these integrals allows to derive also the exact average cost for the bipartite travelling salesman problem.Comment: 9 pages, 2 figure

    An ETH-Tight Exact Algorithm for Euclidean TSP

    Get PDF
    We study exact algorithms for {\sc Euclidean TSP} in Rd\mathbb{R}^d. In the early 1990s algorithms with nO(n)n^{O(\sqrt{n})} running time were presented for the planar case, and some years later an algorithm with nO(n1−1/d)n^{O(n^{1-1/d})} running time was presented for any d≄2d\geq 2. Despite significant interest in subexponential exact algorithms over the past decade, there has been no progress on {\sc Euclidean TSP}, except for a lower bound stating that the problem admits no 2O(n1−1/d−ϔ)2^{O(n^{1-1/d-\epsilon})} algorithm unless ETH fails. Up to constant factors in the exponent, we settle the complexity of {\sc Euclidean TSP} by giving a 2O(n1−1/d)2^{O(n^{1-1/d})} algorithm and by showing that a 2o(n1−1/d)2^{o(n^{1-1/d})} algorithm does not exist unless ETH fails.Comment: To appear in FOCS 201

    Comparing Mean Field and Euclidean Matching Problems

    Full text link
    Combinatorial optimization is a fertile testing ground for statistical physics methods developed in the context of disordered systems, allowing one to confront theoretical mean field predictions with actual properties of finite dimensional systems. Our focus here is on minimum matching problems, because they are computationally tractable while both frustrated and disordered. We first study a mean field model taking the link lengths between points to be independent random variables. For this model we find perfect agreement with the results of a replica calculation. Then we study the case where the points to be matched are placed at random in a d-dimensional Euclidean space. Using the mean field model as an approximation to the Euclidean case, we show numerically that the mean field predictions are very accurate even at low dimension, and that the error due to the approximation is O(1/d^2). Furthermore, it is possible to improve upon this approximation by including the effects of Euclidean correlations among k link lengths. Using k=3 (3-link correlations such as the triangle inequality), the resulting errors in the energy density are already less than 0.5% at d>=2. However, we argue that the Euclidean model's 1/d series expansion is beyond all orders in k of the expansion in k-link correlations.Comment: 11 pages, 1 figur

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    The random link approximation for the Euclidean traveling salesman problem

    Full text link
    The traveling salesman problem (TSP) consists of finding the length of the shortest closed tour visiting N ``cities''. We consider the Euclidean TSP where the cities are distributed randomly and independently in a d-dimensional unit hypercube. Working with periodic boundary conditions and inspired by a remarkable universality in the kth nearest neighbor distribution, we find for the average optimum tour length = beta_E(d) N^{1-1/d} [1+O(1/N)] with beta_E(2) = 0.7120 +- 0.0002 and beta_E(3) = 0.6979 +- 0.0002. We then derive analytical predictions for these quantities using the random link approximation, where the lengths between cities are taken as independent random variables. From the ``cavity'' equations developed by Krauth, Mezard and Parisi, we calculate the associated random link values beta_RL(d). For d=1,2,3, numerical results show that the random link approximation is a good one, with a discrepancy of less than 2.1% between beta_E(d) and beta_RL(d). For large d, we argue that the approximation is exact up to O(1/d^2) and give a conjecture for beta_E(d), in terms of a power series in 1/d, specifying both leading and subleading coefficients.Comment: 29 pages, 6 figures; formatting and typos correcte
    • 

    corecore