11,923 research outputs found

    On the evaluation of background subtraction algorithms without ground-truth

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. C. San Miguel, and J. M. Martínez, "On the evaluation of background subtraction algorithms without ground-truth" in 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2013, 180 - 187In video-surveillance systems, the moving object segmentation stage (commonly based on background subtraction) has to deal with several issues like noise, shadows and multimodal backgrounds. Hence, its failure is inevitable and its automatic evaluation is a desirable requirement for online analysis. In this paper, we propose a hierarchy of existing performance measures not-based on ground-truth for video object segmentation. Then, four measures based on color and motion are selected and examined in detail with different segmentation algorithms and standard test sequences for video object segmentation. Experimental results show that color-based measures perform better than motion-based measures and background multimodality heavily reduces the accuracy of all obtained evaluation results.This work is partially supported by the Spanish Government (TEC2007- 65400 SemanticVideo), by Cátedra Infoglobal-UAM for “Nuevas Tecnologías de video aplicadas a la seguridad”, by the Consejería de Educación of the Comunidad de Madrid and by the European Social Fund

    BSUV-Net: a fully-convolutional neural network for background subtraction of unseen videos

    Full text link
    Background subtraction is a basic task in computer vision and video processing often applied as a pre-processing step for object tracking, people recognition, etc. Recently, a number of successful background-subtraction algorithms have been proposed, however nearly all of the top-performing ones are supervised. Crucially, their success relies upon the availability of some annotated frames of the test video during training. Consequently, their performance on completely “unseen” videos is undocumented in the literature. In this work, we propose a new, supervised, background subtraction algorithm for unseen videos (BSUV-Net) based on a fully-convolutional neural network. The input to our network consists of the current frame and two background frames captured at different time scales along with their semantic segmentation maps. In order to reduce the chance of overfitting, we also introduce a new data-augmentation technique which mitigates the impact of illumination difference between the background frames and the current frame. On the CDNet-2014 dataset, BSUV-Net outperforms stateof-the-art algorithms evaluated on unseen videos in terms of several metrics including F-measure, recall and precision.Accepted manuscrip

    A fully-convolutional neural network for background subtraction of unseen videos

    Full text link
    Background subtraction is a basic task in computer vision and video processing often applied as a pre-processing step for object tracking, people recognition, etc. Recently, a number of successful background-subtraction algorithms have been proposed, however nearly all of the top-performing ones are supervised. Crucially, their success relies upon the availability of some annotated frames of the test video during training. Consequently, their performance on completely “unseen” videos is undocumented in the literature. In this work, we propose a new, supervised, backgroundsubtraction algorithm for unseen videos (BSUV-Net) based on a fully-convolutional neural network. The input to our network consists of the current frame and two background frames captured at different time scales along with their semantic segmentation maps. In order to reduce the chance of overfitting, we also introduce a new data-augmentation technique which mitigates the impact of illumination difference between the background frames and the current frame. On the CDNet-2014 dataset, BSUV-Net outperforms stateof-the-art algorithms evaluated on unseen videos in terms of several metrics including F-measure, recall and precision.Accepted manuscrip

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    An FPGA-based infant monitoring system

    Get PDF
    We have designed an automated visual surveillance system for monitoring sleeping infants. The low-level image processing is implemented on an embedded Xilinx’s Virtex II XC2v6000 FPGA and quantifies the level of scene activity using a specially designed background subtraction algorithm. We present our algorithm and show how we have optimised it for this platform
    • 

    corecore