828 research outputs found

    Algebraic recognizability of regular tree languages

    Full text link
    We propose a new algebraic framework to discuss and classify recognizable tree languages, and to characterize interesting classes of such languages. Our algebraic tool, called preclones, encompasses the classical notion of syntactic Sigma-algebra or minimal tree automaton, but adds new expressivity to it. The main result in this paper is a variety theorem \`{a} la Eilenberg, but we also discuss important examples of logically defined classes of recognizable tree languages, whose characterization and decidability was established in recent papers (by Benedikt and S\'{e}goufin, and by Bojanczyk and Walukiewicz) and can be naturally formulated in terms of pseudovarieties of preclones. Finally, this paper constitutes the foundation for another paper by the same authors, where first-order definable tree languages receive an algebraic characterization

    Variable binding, symmetric monoidal closed theories, and bigraphs

    Get PDF
    This paper investigates the use of symmetric monoidal closed (SMC) structure for representing syntax with variable binding, in particular for languages with linear aspects. In our setting, one first specifies an SMC theory T, which may express binding operations, in a way reminiscent from higher-order abstract syntax. This theory generates an SMC category S(T) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at Concur '0

    Functorial Data Migration

    Get PDF
    In this paper we present a simple database definition language: that of categories and functors. A database schema is a small category and an instance is a set-valued functor on it. We show that morphisms of schemas induce three "data migration functors", which translate instances from one schema to the other in canonical ways. These functors parameterize projections, unions, and joins over all tables simultaneously and can be used in place of conjunctive and disjunctive queries. We also show how to connect a database and a functional programming language by introducing a functorial connection between the schema and the category of types for that language. We begin the paper with a multitude of examples to motivate the definitions, and near the end we provide a dictionary whereby one can translate database concepts into category-theoretic concepts and vice-versa.Comment: 30 page

    Equality languages and fixed point languages

    Get PDF
    This paper considers equality languages and fixed-point languages of homomorphisms and deterministic gsm mappings. It provides some basic properties of these classes of languages. We introduce a new subclass of dgsm mappings, the so-called symmetric dgsm mappings. We prove that (unlike for arbitrary dgsm mappings) their fixed-point languages are regular but not effectively obtainable. This result has various consequences. In particular we strengthen a result from Ehrenfeucht, A., and Rozenberg, G. [(1978), Theor. Comp. Sci. 7, 169–184] by pointing out a class of homomorphisms which includes elementary homomorphisms but still has regular equality languages. Also we show that the result from Herman, G. T., and Walker, A. [(1976), Theor. Comp. Sci. 2, 115–130] that fixed-point languages of DIL mappings are regular, is not effective

    A universe of processes and some of its guises

    Full text link
    Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. In this paper we consider the conceptual foundations for this canvas, and how these can then be converted into mathematical structure. With very little structural effort (i.e. in very abstract terms) and in a very short time span the categorical quantum mechanics (CQM) research program has reproduced a surprisingly large fragment of quantum theory. It also provides new insights both in quantum foundations and in quantum information, and has even resulted in automated reasoning software called `quantomatic' which exploits the deductive power of CQM. In this paper we complement the available material by not requiring prior knowledge of category theory, and by pointing at connections to previous and current developments in the foundations of physics. This research program is also in close synergy with developments elsewhere, for example in representation theory, quantum algebra, knot theory, topological quantum field theory and several other areas.Comment: Invited chapter in: "Deep Beauty: Understanding the Quantum World through Mathematical Innovation", H. Halvorson, ed., Cambridge University Press, forthcoming. (as usual, many pictures

    Preface

    Get PDF

    Presenting Distributive Laws

    Get PDF
    Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond to simple natural transformations. However, when T is not free it can be rather difficult to prove the defining axioms of a distributive law. In this paper we describe how to obtain a distributive law for a monad with an equational presentation from a distributive law for the underlying free monad. We apply this result to show the equivalence between two different representations of context-free languages
    • …
    corecore