151 research outputs found

    A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television

    Get PDF
    Cataloged from PDF version of article.Diffraction and holography are fertile areas for application of signal theory and processing. Recent work on 3DTV displays has posed particularly challenging signal processing problems. Various procedures to compute Rayleigh-Sommerfeld, Fresnel and Fraunhofer diffraction exist in the literature. Diffraction between parallel planes and tilted planes can be efficiently computed. Discretization and quantization of diffraction fields yield interesting theoretical and practical results, and allow efficient schemes compared to commonly used Nyquist sampling. The literature on computer-generated holography provides a good resource for holographic 3DTV related issues. Fast algorithms to compute Fourier, Walsh-Hadamard, fractional Fourier, linear canonical, Fresnel, and wavelet transforms, as well as optimization-based techniques such as best orthogonal basis, matching pursuit, basis pursuit etc., are especially relevant signal processing techniques for wave propagation, diffraction, holography, and related problems. Atomic decompositions, multiresolution techniques, Gabor functions, and Wigner distributions are among the signal processing techniques which have or may be applied to problems in optics. Research aimed at solving such problems at the intersection of wave optics and signal processing promises not only to facilitate the development of 3DTV systems, but also to contribute to fundamental advances in optics and signal processing theory. © 2007 IEEE

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    VIDEO TEMPLATE MATCHING ALGORITHM FOR CONSTRUCTION PROJECTS---A HADAMARD DOMAIN APPROACH

    Get PDF
    One exciting prospect of modern construction projects is the potential for multimedia techniques, such as real-time video, to significantly affect the way of project delivery. Of all techniques in real-time video processing, template-matching plays the most essential role because of its high computational complexity and its ability to deal with considerable redundancy. However, commonly used template-matching techniques in spatial domain cannot meet all of the requirements for all construction applications. Some methods have heavy computational burden, others suffer from inadequate accuracy. Therefore, an adjustable template-matching capable of meeting all requirements is an exciting prospect. The proposed template-matching algorithm utilizes special relation between associated Hadamard determinants. Results indicate the proposed algorithm outperforms many popular algorithms without increasing computational complexity level. Moreover, the algorithm is capable of adjusting three parameters accordingly to meet different construction-related applications

    Techniques améliorées pour la cryptanalyse des primitives symétriques

    Get PDF
    This thesis proposes improvements which can be applied to several techniques for the cryptanalysis of symmetric primitives. Special attention is given to linear cryptanalysis, for which a technique based on the fast Walsh transform was already known (Collard et al., ICISIC 2007). We introduce a generalised version of this attack, which allows us to apply it on key recovery attacks over multiple rounds, as well as to reduce the complexity of the problem using information extracted, for example, from the key schedule. We also propose a general technique for speeding key recovery attacks up which is based on the representation of Sboxes as binary decision trees. Finally, we showcase the construction of a linear approximation of the full version of the Gimli permutation using mixed-integer linear programming (MILP) optimisation.Dans cette thèse, on propose des améliorations qui peuvent être appliquées à plusieurs techniques de cryptanalyse de primitives symétriques. On dédie une attention spéciale à la cryptanalyse linéaire, pour laquelle une technique basée sur la transformée de Walsh rapide était déjà connue (Collard et al., ICISC 2007). On introduit une version généralisée de cette attaque, qui permet de l'appliquer pour la récupération de clé considerant plusieurs tours, ainsi que le réduction de la complexité du problème en utilisant par example des informations provénantes du key-schedule. On propose aussi une technique générale pour accélérer les attaques par récupération de clé qui est basée sur la représentation des boîtes S en tant que arbres binaires. Finalement, on montre comment on a obtenu une approximation linéaire sur la version complète de la permutation Gimli en utilisant l'optimisation par mixed-integer linear programming (MILP)

    FNet: Mixing Tokens with Fourier Transforms

    Full text link
    We show that Transformer encoder architectures can be massively sped up, with limited accuracy costs, by replacing the self-attention sublayers with simple linear transformations that "mix" input tokens. These linear transformations, along with standard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text classification tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder with a standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE benchmark, but trains nearly seven times faster on GPUs and twice as fast on TPUs. The resulting model, FNet, also scales very efficiently to long inputs. Specifically, when compared to the "efficient" Transformers on the Long Range Arena benchmark, FNet matches the accuracy of the most accurate models, but is faster than the fastest models across all sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory footprint and is particularly efficient at smaller model sizes: for a fixed speed and accuracy budget, small FNet models outperform Transformer counterparts

    Orthogonal transforms and their application to image coding

    Get PDF
    Imperial Users onl
    corecore