1,255 research outputs found

    Complete Interference Mitigation Through Receiver-Caching in Wyner's Networks

    Full text link
    We present upper and lower bounds on the per-user multiplexing gain (MG) of Wyner's circular soft-handoff model and Wyner's circular full model with cognitive transmitters and receivers with cache memories. The bounds are tight for cache memories with prelog μ2/3D\mu\geq 2/3D in the soft-handoff model and for μD\mu \geq D in the full model, where DD denotes the number of possibly demanded files. In these cases the per-user MG of the two models is 1+μ/D1+\mu/D, the same as for non-interfering point-to-point links with caches at the receivers. Large receiver cache-memories thus allow to completely mitigate interference in these networks.Comment: Submitted to ITW 2016 in Cambridg

    Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems with Multi-Antenna Users

    Full text link
    In downlink multi-antenna systems with many users, the multiplexing gain is strictly limited by the number of transmit antennas NN and the use of these antennas. Assuming that the total number of receive antennas at the multi-antenna users is much larger than NN, the maximal multiplexing gain can be achieved with many different transmission/reception strategies. For example, the excess number of receive antennas can be utilized to schedule users with effective channels that are near-orthogonal, for multi-stream multiplexing to users with well-conditioned channels, and/or to enable interference-aware receive combining. In this paper, we try to answer the question if the NN data streams should be divided among few users (many streams per user) or many users (few streams per user, enabling receive combining). Analytic results are derived to show how user selection, spatial correlation, heterogeneous user conditions, and imperfect channel acquisition (quantization or estimation errors) affect the performance when sending the maximal number of streams or one stream per scheduled user---the two extremes in data stream allocation. While contradicting observations on this topic have been reported in prior works, we show that selecting many users and allocating one stream per user (i.e., exploiting receive combining) is the best candidate under realistic conditions. This is explained by the provably stronger resilience towards spatial correlation and the larger benefit from multi-user diversity. This fundamental result has positive implications for the design of downlink systems as it reduces the hardware requirements at the user devices and simplifies the throughput optimization.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 11 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/one-or-multiple-stream

    On the Non-Orthogonal Layered Broadcast Codes in Cooperative Wireless Networks

    Get PDF
    A multi-fold increase in spectral efficiency and throughput are envisioned in the fifth generation of cellular networks to meet the requirements of International Telecommunication Union (ITU) IMT-2020 on massive connectivity and tremendous data traffic. This is achieved by evolution in three aspects of current networks. The first aspect is shrinking the cell sizes and deploying dense picocells and femtocells to boost the spectral reuse. The second is to allocate more spectrum resources including millimeter-wave bands. The third is deploying highly efficient communications and multiple access techniques. Non-orthogonal multiple access (NOMA) is a promising communication technique that complements the current commercial spectrum access approach to boost the spectral efficiency, where different data streams/users’ data share the same time, frequency and code resource blocks (sub-bands) via superimposition with each other. The receivers decode their own messages by deploying the successive interference cancellation (SIC) decoding rule. It is known that the NOMA coding is superior to conventional orthogonal multiple access (OMA) coding, where the resources are split among the users in either time or frequency domain. The NOMA based coding has been incorporated into other coding techniques including multi-input multi-output (MIMO), orthogonal frequency division multiplexing (OFDM), cognitive radio and cooperative techniques. In cooperative NOMA codes, either dedicated relay stations or stronger users with better channel conditions, act as relay to leverage the spatial diversity and to boost the performance of the other users. The advantage of spatial diversity gain in relay-based NOMA codes, is deployed to extend the coverage area of the network, to mitigate the fading effect of multipath channel and to increase the system throughput, hence improving the system efficiency. In this dissertation we consider the multimedia content delivery and machine type communications over 5G networks, where scalable content and low complexity encoders is of interest. We propose cross-layer design for transmission of successive refinement (SR) source code interplayed with non-orthogonal layered broadcast code for deployment in several cooperative network architectures. Firstly, we consider a multi-relay coding scheme where a source node is assisted by a half-duplex multi-relay non-orthogonal amplify-forward (NAF) network to communicate with a destination node. Assuming the channel state information (CSI) is not available at the source node, the achievable layered diversity multiplexing tradeoff (DMT) curve is derived. Then, by taking distortion exponent (DE) as the figure of merit, several achievable lower bounds are proved, and the optimal expected distortion performance under high signal to noise ratio (SNR) approximation is explicitly obtained. It is shown that the proposed coding can achieve the multi-input single-output (MISO) upper bound under certain regions of bandwidth ratios, by which the optimal performance in these regions can be explicitly characterized. Further the non-orthogonal layered coding scheme is extended to a multi-hop MIMO decode-forward (DF) relay network where a set of DE lower bounds is derived. Secondly, we propose a layered cooperative multi-user scheme based on non-orthogonal amplify-forward (NAF) relaying and non-orthogonal multiple access (NOMA) codes, aiming to achieve multi-user uplink transmissions with low complexity and low signaling overhead, particularly applicable to the machine type communications (MTC) and internet of things (IoT) systems. By assuming no CSI available at the transmitting nodes, the proposed layered codes make the transmission rate of each user adaptive to the channel realization. We derive the close-form analytical results on outage probability and the DMT curve of the proposed layered NAF codes in the asymptotic regime of high SNR, and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion. Thirdly, we consider a single relay network and study the non-orthogonal layered scheme in the general SNR regime. A layered relaying scheme based on compress-forward (CF) is introduced, where optimization of end to end performance in terms of expected distortion is conducted to jointly determine network parameters. We further derive the explicit analytical optimal solution with two layers in the absence of channel knowledge. Finally, we consider the problem of multicast of multi-resolution layered messages over downlink of a cellular system with the assumption of CSI is not available at the base station (BS). Without loss generality, spatially random users are divided into two groups, where the near group users with better channel conditions decode for both layers, while the users in the second group decode for base layer only. Once the BS launches a multicast message, the first group users who successfully decoded the message, deploy a distributed cooperating scheme to assist the transmission to the other users. The cooperative scheme is naive but we will prove it can effectively enhance the network capacity. Closed form outage probability is explicitly derived for the two groups of users. Further it is shown that diversity order equal to the number of users in the near group is achievable, hence the coding gain of the proposed distributed scheme fully compensate the lack of CSI at the BS in terms of diversity order

    Spectral Efficiency and Energy Efficiency of OFDM Systems: Impact of Power Amplifiers and Countermeasures

    Full text link
    In wireless communication systems, the nonlinear effect and inefficiency of power amplifier (PA) have posed practical challenges for system designs to achieve high spectral efficiency (SE) and energy efficiency (EE). In this paper, we analyze the impact of PA on the SE-EE tradeoff of orthogonal frequency division multiplex (OFDM) systems. An ideal PA that is always linear and incurs no additional power consumption can be shown to yield a decreasing convex function in the SE-EE tradeoff. In contrast, we show that a practical PA has an SE-EE tradeoff that has a turning point and decreases sharply after its maximum EE point. In other words, the Pareto-optimal tradeoff boundary of the SE-EE curve is very narrow. A wide range of SE-EE tradeoff, however, is desired for future wireless communications that have dynamic demand depending on the traffic loads, channel conditions, and system applications, e.g., high-SE-with-low-EE for rate-limited systems and high-EE-with-low-SE for energy-limited systems. For the SE-EE tradeoff improvement, we propose a PA switching (PAS) technique. In a PAS transmitter, one or more PAs are switched on intermittently to maximize the EE and deliver an overall required SE. As a consequence, a high EE over a wide range SE can be achieved, which is verified by numerical evaluations: with 15% SE reduction for low SE demand, the PAS between a low power PA and a high power PA can improve EE by 323%, while a single high power PA transmitter improves EE by only 68%.Comment: to be published, IEEE J. Sel. Areas Commu
    corecore