441 research outputs found

    Single-Carrier Modulation versus OFDM for Millimeter-Wave Wireless MIMO

    Full text link
    This paper presents results on the achievable spectral efficiency and on the energy efficiency for a wireless multiple-input-multiple-output (MIMO) link operating at millimeter wave frequencies (mmWave) in a typical 5G scenario. Two different single-carrier modem schemes are considered, i.e., a traditional modulation scheme with linear equalization at the receiver, and a single-carrier modulation with cyclic prefix, frequency-domain equalization and FFT-based processing at the receiver; these two schemes are compared with a conventional MIMO-OFDM transceiver structure. Our analysis jointly takes into account the peculiar characteristics of MIMO channels at mmWave frequencies, the use of hybrid (analog-digital) pre-coding and post-coding beamformers, the finite cardinality of the modulation structure, and the non-linear behavior of the transmitter power amplifiers. Our results show that the best performance is achieved by single-carrier modulation with time-domain equalization, which exhibits the smallest loss due to the non-linear distortion, and whose performance can be further improved by using advanced equalization schemes. Results also confirm that performance gets severely degraded when the link length exceeds 90-100 meters and the transmit power falls below 0 dBW.Comment: accepted for publication on IEEE Transactions on Communication

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Active Transmitter Antenna Array Modeling for MIMO Applications

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interests to the Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies.\ua0 MIMO systems exploit active transmitter antenna arrays for higher energy efficiency and providing beamforming flexibility. The close integration of multiple PAs and antennas increases the transmitter analysis complexity. Moreover, due to the small antenna element spacing at mm-wave frequencies, isolators are too bulky and cannot be used. Therefore, including the effects of interactions between the antenna array and PAs is a significant aspect in the analysis of MIMO transmitters. For large active arrays, applying joint circuit and EM simulation tools for the analysis is a complicated and time-consuming task. In these occasions, behavioral models are the key to the fast and accurate evaluation of active transmitter antenna arrays.In this thesis, a technique for modeling the active transmitter antenna array performance is presented. The proposed model considers the effect of PAs nonlinearity as well as the coupling and mismatch in the antenna array. With this model, a comprehensive prediction of radiation pattern and signal distortions in the far-field is feasible. The model is experimentally verified by a mmWave active subarray antenna for a beam steering scenario and by performing over-the-air measurements. The measurement results effectively validate the modeling technique for a wide range of steering angles.\ua0\ua0 Furthermore, a linearity analysis is provided to predict transmitter performance in conjunction with beam-dependent digital predistortion (DPD) linearization. The study reveals the model potential in evaluating different DPD approaches as well as predicting the performance of linearized transmitters. The demonstration shows that the variation of nonlinear distortion versus steering angle depends significantly on the array configuration and beam direction.In summary, the proposed model allows for the prediction of the active transmitter antenna array performance in the early design stages with low computational effort. It can provide design guides for developing large-scale active arrays and can be employed for evaluating the DPD and transmitter linearity performance

    Theoretical analysis of nonlinear amplification effects in massive MIMO systems

    Get PDF
    To fulfill 5th Generation (5G) communication capacity demands, the use of a large number of antennas has been widely investigated, and the array gain and spatial multiplexing that are offered by massive multiple input multiple output (mMIMO) have been used to improve the capacity. Fully digital architectures are not feasible for a large number of antennas, and hybrid analog/digital systems have emerged as options to retain a high number of antennas without as many radio frequency (RF) chains. However, these systems have, as consequences, non-avoidable nonlinear effects due to power amplifiers functioning in nonlinear regions. The strong nonlinear effects throughout the transmission chain will have a negative impact on the overall system’s performance. Being able to access this impact is very important. For this purpose, we propose analytical and semi-analytical tools that allow for the evaluation of the nonlinear effects of a hybrid analog/digital orthogonal frequency-division multiplexing (OFDM) system. The proposed analysis starts with the characterization of the power amplifier’s (PA) nonlinear response. This response is then used to derive a semi-analytic bit error rate expression. The theoretical tools are validated by using numerical results from two different cases: in the first one, the nonlinear PA response is assumed to follow an analytical model found in the literature and, in the second, the used nonlinear polynomial model mimics the response of a real amplifier. Using these two scenarios, the proposed tools are shown to be accurate making it possible to predict the nonlinearities’ penalties in hybrid analog/digital OFDM systems and/or to assess the optimal operation point for a specific nonlinear amplifier.publishe

    Modeling Approaches for Active Antenna Transmitters

    Get PDF
    The rapid growth of data traffic in mobile communications has attracted interest to Multiple-Input-Multiple-Output (MIMO) communication systems at millimeter-wave (mmWave) frequencies. MIMO systems exploit active antenna arrays transmitter configurations to obtain higher energy efficiency and beamforming flexibility. The analysis of transmitters in MIMO systems becomes complex due to the close integration of several antennas and power amplifiers (PAs) and the problems associated with heat dissipation. Therefore, the transmitter analysis requires efficient joint EM, circuit, and thermal simulations of its building blocks, i.e., the antenna array and PAs. Due to small physical spacing at mmWave, bulky isolators cannot be used to eliminate unwanted interactions between PA and antenna array. Therefore, the mismatch and mutual coupling in the antenna array directly affect PA output load and PA and transmitter performance. On the other hand, PAs are the primary source of nonlinearity, power consumption, and heat dissipation in transmitters. Therefore, it is crucial to include joint thermal and electrical behavior of PAs in analyzing active antenna transmitters. In this thesis, efficient techniques for modeling active antenna transmitters are presented. First, we propose a hardware-oriented transmitter model that considers PA load-dependent nonlinearity and the coupling, mismatch, and radiated field of the antenna array. The proposed model is equally accurate for any mismatch level that can happen at the PA output. This model can predict the transmitter radiation pattern and nonlinear signal distortions in the far-field. The model\u27s functionality is verified using a mmWave active subarray antenna module for a beam steering scenario and by performing the over-the-air measurements. The load-pull modeling idea was also applied to investigate the performance of a mmWave spatial power combiner module in the presence of critical coupling effects on combining performance. The second part of the thesis deals with thermal challenges in active antenna transmitters and PAs as the main source of heat dissipation. An efficient electrothermal modeling approach that considers the thermal behavior of PAs, including self-heating and thermal coupling between the IC hot spots, coupled with the electrical behavior of PA, is proposed. The thermal model has been employed to evaluate a PA DUT\u27s static and dynamic temperature-dependent performance in terms of linearity, gain, and efficiency. In summary, the proposed modeling approaches presented in this thesis provide efficient yet powerful tools for joint analysis of complex active antenna transmitters in MIMO systems, including sub-systems\u27 behavior and their interactions

    Characterizing nonlinearity in multiantenna multibeam transmitters

    Get PDF
    Abstract. In this thesis, effects of power amplifier (PA) distortion in multiantenna transmitter is studied. Input signal of each PA in the array is modelled by two or multiple tones to characterize the nonlinearity in terms of intermodulation distortion (IMD). In intermodulation, the phase of the nonlinearity depends on the phases of the corresponding input tones. Hence, in beamforming, progressive phase of the nonlinear components over the antenna elements creates a steered beam for the nonlinearity. Measurement setup is created to measure the phase and amplitude of the IMD components in the PA output. The theoretical polynomial relation of the IMD phase dependency on the input tones is validated by measurements. For flexible measurements, the setup is automatized by standard commands for programmable instruments. Second part of the thesis studies the array IMD by simulations in MATLAB. The used PA model is a memoryless polynomial fitted against the measured amplitude-to-amplitude modulation and amplitude-to-phase modulation responses of a real amplifier. The effects of nonlinearity are studied by using two tones to present each independent data stream in the PA inputs. Hence, in multibeam scenario, each data stream is modelled by two tones having individual phase and amplitude depending on the beamforming coefficients of given stream. The simulations are performed in frequency domain by utilizing the concept of spectral convolution to model the intermodulation distortion, and array factor to model the far-field radiation of the linear and nonlinear PA output components. By utilizing the simulator, PA nonlinearity is analyzed in single-beam and multi-beam scenarios by varying the steering angles, allocated stream powers and amplitude distribution over the PAs. It is observed that IMD terms which depend on only one stream are steered to same direction as the linear terms whereas the IMD terms depending on both streams spreads more in space. This has potentially positive impacts on the signal-to-distortion ratio of the streams observed in beamforming directions
    • …
    corecore