189 research outputs found

    Calculating with lenses: optimising bidirectional transformations

    Get PDF
    This paper presents an equational calculus to reason about bidirectional transformations specified in the point-free style. In particular, it focuses on the so-called lenses as a bidirectional idiom, and shows that many standard laws characterising point-free combinators and recursion patterns are also valid in that setting. A key result is that uniqueness also holds for bidirectional folds and unfolds, thus unleashing the power of fusion as a program optimisation technique. A rewriting system for automatic lens optimisation is also presented, to prove the usefulness of the proposed calculus.(undefined

    Foundations for structured programming with GADTs

    Get PDF
    GADTs are at the cutting edge of functional programming and become more widely used every day. Nevertheless, the semantic foundations underlying GADTs are not well understood. In this paper we solve this problem by showing that the standard theory of data types as carriers of initial algebras of functors can be extended from algebraic and nested data types to GADTs. We then use this observation to derive an initial algebra semantics for GADTs, thus ensuring that all of the accumulated knowledge about initial algebras can be brought to bear on them. Next, we use our initial algebra semantics for GADTs to derive expressive and principled tools — analogous to the well-known and widely-used ones for algebraic and nested data types — for reasoning about, programming with, and improving the performance of programs involving, GADTs; we christen such a collection of tools for a GADT an initial algebra package. Along the way, we give a constructive demonstration that every GADT can be reduced to one which uses only the equality GADT and existential quantification. Although other such reductions exist in the literature, ours is entirely local, is independent of any particular syntactic presentation of GADTs, and can be implemented in the host language, rather than existing solely as a metatheoretical artifact. The main technical ideas underlying our approach are (i) to modify the notion of a higher-order functor so that GADTs can be seen as carriers of initial algebras of higher-order functors, and (ii) to use left Kan extensions to trade arbitrary GADTs for simpler-but-equivalent ones for which initial algebra semantics can be derive

    Categorical combinators

    Get PDF
    Our main aim is to present the connection between λ-calculus and Cartesian closed categories both in an untyped and purely syntactic setting. More specifically we establish a syntactic equivalence theorem between what we call categorical combinatory logic and λ-calculus with explicit products and projections, with β and η-rules as well as with surjective pairing. “Combinatory logic” is of course inspired by Curry's combinatory logic, based on the well-known S, K, I. Our combinatory logic is “categorical” because its combinators and rules are obtained by extracting untyped information from Cartesian closed categories (looking at arrows only, thus forgetting about objects). Compiling λ-calculus into these combinators happens to be natural and provokes only n log n code expansion. Moreover categorical combinatory logic is entirely faithful to β-reduction where combinatory logic needs additional rather complex and unnatural axioms to be. The connection easily extends to the corresponding typed calculi, where typed categorical combinatory logic is a free Cartesian closed category where the notion of terminal object is replaced by the explicit manipulation of applying (a function to its argument) and coupling (arguments to build datas in products). Our syntactic equivalences induce equivalences at the model level. The paper is intended as a mathematical foundation for developing implementations of functional programming languages based on a “categorical abstract machine,” as developed in a companion paper (Cousineau, Curien, and Mauny, in “Proceedings, ACM Conf. on Functional Programming Languages and Computer Architecture,” Nancy, 1985)

    A Structural Approach to Reversible Computation

    Get PDF
    Reversibility is a key issue in the interface between computation and physics, and of growing importance as miniaturization progresses towards its physical limits. Most foundational work on reversible computing to date has focussed on simulations of low-level machine models. By contrast, we develop a more structural approach. We show how high-level functional programs can be mapped compositionally (i.e. in a syntax-directed fashion) into a simple kind of automata which are immediately seen to be reversible. The size of the automaton is linear in the size of the functional term. In mathematical terms, we are building a concrete model of functional computation. This construction stems directly from ideas arising in Geometry of Interaction and Linear Logic---but can be understood without any knowledge of these topics. In fact, it serves as an excellent introduction to them. At the same time, an interesting logical delineation between reversible and irreversible forms of computation emerges from our analysis.Comment: 30 pages, appeared in Theoretical Computer Scienc

    Strongly typed rewriting for coupled software transformation

    Get PDF
    Coupled transformations occur in software evolution when multiple artifacts must be modified in such a way that they remain consistent with each other. An important example involves the coupled transformation of a data type, its instances, and the programs that consume or produce it. Previously, we have provided a formal treatment of transformation of the first two: data types and instances. The treatment involved the construction of type-safe, type-changing strategic rewrite systems. In this paper, we extend our treatment to the transformation of corresponding data processing programs. The key insight underlying the extension is that both data migration functions and data processors can be represented type-safely by a generalized abstract data type (GADT). These representations are then subjected to program calculation rules, harnessed in type-safe, type-preserving strategic rewrite systems. For ease of calculation, we use point-free representations and corresponding calculation rules. Thus, coupled transformations are carried out in two steps. First, a type-changing rewrite system is applied to a source type to obtain a target type together with (representations of) migration functions between source and target. Then, a type-preserving rewrite system is applied to the composition of a migration function and a data processor on the source (or target) type to obtain a data processor on the target (or source) type. All rewrites are type-safe.Fundação para a Ciência e a Tecnologia (FCT) - POSI/ICHS/44304/2002

    On the enumeration of closures and environments with an application to random generation

    Get PDF
    Environments and closures are two of the main ingredients of evaluation in lambda-calculus. A closure is a pair consisting of a lambda-term and an environment, whereas an environment is a list of lambda-terms assigned to free variables. In this paper we investigate some dynamic aspects of evaluation in lambda-calculus considering the quantitative, combinatorial properties of environments and closures. Focusing on two classes of environments and closures, namely the so-called plain and closed ones, we consider the problem of their asymptotic counting and effective random generation. We provide an asymptotic approximation of the number of both plain environments and closures of size nn. Using the associated generating functions, we construct effective samplers for both classes of combinatorial structures. Finally, we discuss the related problem of asymptotic counting and random generation of closed environemnts and closures

    Faithful (meta-)encodings of programmable strategies into term rewriting systems

    Get PDF
    Rewriting is a formalism widely used in computer science and mathematical logic. When using rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations one wants to operate and rewriting strategies are used to con- trol their application. The operational semantics of these strategies are generally accepted and approaches for analyzing the termination of specific strategies have been studied. We propose in this paper a generic encoding of classic control and traversal strategies used in rewrite based languages such as Maude, Stratego and Tom into a plain term rewriting system. The encoding is proven sound and complete and, as a direct consequence, estab- lished termination methods used for term rewriting systems can be applied to analyze the termination of strategy controlled term rewriting systems. We show that the encoding of strategies into term rewriting systems can be easily adapted to handle many-sorted signa- tures and we use a meta-level representation of terms to reduce the size of the encodings. The corresponding implementation in Tom generates term rewriting systems compatible with the syntax of termination tools such as AProVE and TTT2, tools which turned out to be very effective in (dis)proving the termination of the generated term rewriting systems. The approach can also be seen as a generic strategy compiler which can be integrated into languages providing pattern matching primitives; experiments in Tom show that applying our encoding leads to performances comparable to the native Tom strategies

    Point-free program transformation

    Get PDF
    Functional programs are particularly well suited to formal manipulation by equational reasoning. In particular, it is straightforward to use calculational methods for program transformation. Well-known transformation techniques, like tupling or the introduction of accumulating parameters, can be implemented using calculation through the use of the fusion (or promotion) strategy. In this paper we revisit this transformation method, but, unlike most of the previous work on this subject, we adhere to a pure point-free calculus that emphasizes the advantages of equational reasoning. We focus on the accumulation strategy initially proposed by Bird, where the transformed programs are seen as higher-order folds calculated systematically from a specification. The machinery of the calculus is expanded with higher-order point-free operators that simplify the calculations. A substantial number of examples (both classic and new) are fully developed, and we introduce several shortcut optimization rules that capture typical transformation patterns.Presidência do Conselho de Ministros - POSI/ICHS/44304/2002
    corecore