
Logical Methods in Computer Science
Volume 15, Issue 4, 2019, pp. 3:1–3:21
https://lmcs.episciences.org/

Submitted Nov. 28, 2018
Published Oct. 17, 2019

ON THE ENUMERATION OF CLOSURES AND ENVIRONMENTS

WITH AN APPLICATION TO RANDOM GENERATION

MACIEJ BENDKOWSKI AND PIERRE LESCANNE

Jagiellonian University, Faculty of Mathematics and Computer Science, Theoretical Computer
Science Department, ul. Prof. Lojasiewicza 6, 30–348 Kraków, Poland
e-mail address: maciej.bendkowski@tcs.uj.edu.pl

University of Lyon, École normale supérieure de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL),
46 allée d’Italie, 69364 Lyon, France
e-mail address: pierre.lescanne@ens-lyon.fr

Abstract. Environments and closures are two of the main ingredients of evaluation in
lambda-calculus. A closure is a pair consisting of a lambda-term and an environment,
whereas an environment is a list of lambda-terms assigned to free variables. In this
paper we investigate some dynamic aspects of evaluation in lambda-calculus considering
the quantitative, combinatorial properties of environments and closures. Focusing on two
classes of environments and closures, namely the so-called plain and closed ones, we consider
the problem of their asymptotic counting and effective random generation. We provide an
asymptotic approximation of the number of both plain environments and closures of size n.
Using the associated generating functions, we construct effective samplers for both classes
of combinatorial structures. Finally, we discuss the related problem of asymptotic counting
and random generation of closed environments and closures.

1. Introduction

Though, traditionally, computational complexity is investigated in the context of Turing
machines since their initial development, evaluation complexity in various term rewriting
systems, such as λ-calculus or combinatory logic, attracts increasing attention only quite
recently. For instance, let us mention the worst-case analysis of evaluation, based on the
invariance of unitary cost models [29, 3, 1] or transformation techniques proving termination
of term rewriting systems [2].

Much like in classic computational complexity, the corresponding average-case analysis of
evaluation in term rewriting systems follows a different, more combinatorial and quantitative
approach, compared to its worst-case variant. In [13, 14] Choppy, Kaplan and Soria propose
an average-case complexity analysis of normalisation in a general class of term rewriting

Key words and phrases: lambda-calculus, combinatorics, functional programming, mathematical analysis,
complexity.

Maciej Bendkowski was partially supported within the Polish National Science Center grant
2016/21/N/ST6/01032.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(4:3)2019
c© Maciej Bendkowski and Pierre Lescanne
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/250298671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

3:2 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

systems using generating functions, in particular techniques from analytic combinatorics [22].
Following a somewhat similar path, Bendkwoski, Grygiel and Zaionc investigated later the
asymptotic properties of normal-order reduction in combinatory logic, in particular the
normalisation cost of large random combinators [9, 5]. Alas, normalisation in λ-calculus
has not yet been studied in such a combinatorial context. Nonetheless, static, quantitative
properties of λ-terms, form an active stream of recent research. Let us mention, non-
exhaustively, investigations into the asymptotic properties of large random λ-terms [18, 8]
or their effective counting and random generation ensuring a uniform distribution among
terms with equal size [11, 26, 25, 12].

In the current paper, we take a step towards the average-case analysis of reduction
complexity in λ-calculus. Specifically, we offer a quantitative analysis of environments
and closures — two types of structures frequently present at the core of abstract machines
modelling λ-term evaluation, such as for instance the Krivine or U- machine [16, 31], presented
in Section 4. In Section 3 we discuss the combinatorial representation of environments and
closures, in particular the associated de Bruijn notation. In Section 5 we list the analytic
combinatorics tools required for our analysis and we show in Section 7 how they can be used for
random generation. In Section 6 and Section 8 we conduct our quantitative investigation into
so-called plain and closed environments and closures, respectively, subsequently concluding
the paper in Section 9.

2. A combinatoric approach to higher order rewriting systems

As said in the introduction, viewing the λ-calculus from the perspective of counting is new,
especially in the scientific community of structures for computation and deduction and
requires motivation to be detailed.

First, clearly a new perspective on λ-calculus enlightens the semantics and opens new
directions, especially by adding a touch of efficiency and a discussion on how the size
of structures with binders (like λ-terms) can be measured. However, despite advanced
mathematical techniques are used, the goal is more practical and connected to operational
semantics and implementation. Counting allows assigning a precise measure on how a specific
algorithm performs. In [27]1 Knuth calls analysis of Type A an analysis of a particular
algorithm and shows how important it is in computer science. He adds (p. 3): “Complexity
analysis provides an interesting way to sharpen our tools for the more routine problems we
face from day to day.”

Furthermore, a notion of probabilistic distribution as used in the average-case analysis of
algorithms, after Sedgewick and Flajolet [39], is deduced. In particular a notion of uniform
distribution is inferred in order to evaluate the average case efficiency of algorithms w.r.t.
this distribution. In this paper, the algorithms the authors have in mind are the several
reduction machines for the λ-calculus, especially the Krivine machine and the U-machine,
for which analyses of Type A and more specifically average case analyses are expected to
be built. Another application is random generation of terms and several kinds of logical
models for computation as used for instance in QuickCheck [15]. A fully and mathematically
justified random generator can only be built using the kind of tools developed in this paper.

But average case analysis based on uniform distribution is not the only one. The
so-called smoothed analysis of algorithms [40] is another family of tools which is based on

1This paper is part of the book “Selected Papers on Analysis of Algorithms” [28] dedicated to Professor
N. G. de Bruijn.

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:3

measures of size. Here the distribution is no more uniform and this method has promising
applications, hopefully in structures for computation.

3. Environments and closures

In this section we outline the de Bruijn notation and related concepts deriving from λ-calculus
variants with explicit substitutions used in the subsequent sections.

3.1. De Bruijn notation. Though the classic variable notation for λ-terms is elegant and
concise, it poses considerable implementation issues, especially in the context of substitution
resolution and potential name clashes. In order to accommodate these problems, de Bruijn
proposed an alternative name-free notation for λ-terms [19]. In this notation, each variable
x is replaced by an appropriate non-negative integer n (so-called index) intended to encode
the distance between x and its binding abstraction. Specifically, if x is bound to the (n+1)st
abstraction on its unique path to the term root in the associated λ-tree, then x is replaced
by the index n. In this manner, each closed λ-term in the classic variable notation is
representable in the de Bruijn notation.

Example 3.1. Consider the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z). Figure 1 depicts
three different representations of T as tree-like structures. The first one uses explicit variables,
the second one uses back pointers to represent the bound variables, whereas the third one
uses De Bruijn indices.

@

λx λz

λy @

λz λu z

λu u

@

x λy

λx

y

@

λ λ

λ @

λ λ

kk

λ

kk

@

77

λ

λ

ii

@

λ λ

λ @

λ λ 0

λ 0

@

3 λ

λ

1

Figure 1: Three representations of the λ-term T = (λxyzu.x(λyx.y)) (λz.(λu.u)z).

In order to represent free occurrences of variables, one uses indices of values exceeding
the number of abstractions crossed on respective paths to the term root. For instance, λx.yz
can be represented as λ12 since 1 and 2 correspond to two different variable occurrences.

Recall that in the classic variable notation a λ-term M is said to be closed if each of its
variables is bound. In the de Bruijn notation, it means that for each index occurrence n in
M one finds at least n+ 1 abstractions on the unique path from n to the term root of M . If
a λ-term is not closed, it is said to be open. If heading M with m abstractions turns it into
a closed λ-term, then M is said to be m-open. In particular, closed λ-terms are 0-open.

3:4 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

Example 3.2. Note that λλλλ(3(λλ1)) (λ(λ0)0), actually the T of Example 3.1 in De
Bruijn notation, is closed. The λ-term 3(λλ1) is 4-open, however it is not 3-open. Indeed,
λλλ(3(λλ1)) is 1-open instead of being closed. Similarly, λ(3(λλ1)) is 3-open, however it is
not 2-open.

Example 3.3. Consider, on Figure 2, the term S K and its two direct contractions

(λλλ 2 0 (1 0)) (λλ1)→ λλ((λλ1) 0 (1 0))→ λλ((λ1) (1 0),

or, in notation with explicit names

(λx.λy.λz.xz(yz)) (λx.λy.x)→ λy.λz.(λx.λy.x)z(yz)→ λy.λz.(λy.z)(yz).

It shows how β-contraction works in De Bruijn notation (cf. the next subsection). Moreover,
it shows in λλ(λ1 (λ1 0) that the same variable namely z may be associated with two De
Bruijn indices, namely 1 and 0 and that the same De Bruijn index namely 1 may be
associated with two variables namely y and z. In the de Bruijn notation the value of an
index associated with a variable depends of the context.

@

λ λ

λ λ

λ

ii

@

@ @

55

66

gg

kk

→

λ

λ

@

@ @

λ

66

ff

kk

λ

ii

→

λ

λ

@

λ @

44

ff

kk

Figure 2: The term S K and two contractions.

Certainly, the set Lm of m-open terms is a subset of the set of (m+ 1)-open terms. In
other words, if M is m-open, it is also (m+ 1)-open. The set of all λ-terms is called the set
of plain terms. It is the union of the sets of m-open terms and is denoted as L∞. Hence,

L0 ⊆ L1 ⊆ · · · ⊆ Lm ⊆ Lm+1 · · · ⊆
∞⋃
i=0

Li = L∞ . (3.1)

Let us note that de Bruijn’s name-free representation of λ-terms exhibits an important
combinatorial benefit. Specifically, each λ-term in the de Bruijn notation represents an
entire α-equivalence class of λ-terms in the classical variable notation. Indeed, two variable
occurrences bound by the same abstraction are assigned the same de Bruijn index. In
consequence, counting λ-terms in the de Bruijn notation we are, in fact, counting entire
α-equivalence classes instead of their inhabitants.

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:5

3.2. Closures and β-reduction. Recall that the main rewriting rule of λ-calculus is
β-reduction, see, e.g. [17]:

(β) (λM) N → M{0← N} (3.2)

where the operation {n←M}, i.e. substitution of λ-terms for de Bruijn indices, is defined
inductively as follows:

(M N){n← P} = M{n← P} N{n← P}
(λM){n← P} = λ(M{(n+ 1)← P})

m{n← P} =

m− 1 if m > n

τn0 (P) if m = n

m if m < n .

(3.3)

The first rule distributes the substitution in an application, the second rule pushes a
substitution under an abstraction, and the third rule dictates how a substitution acts when
the term is an index. Finally, τn0 (P) tells how to update the indices of a term which is
substituted for an index. The operation τni (M) is defined by induction on M as follows:

τni (M N) = τni (M) τni (N)

τni (λM) = λ(τni+1(M))

τni (m) =

{
m+ n− 1 if m > i

m if m ≤ i .

(3.4)

A λ-term in the form of (λM) N is called a β-redex (or simply a redex). Lambda terms
not containing β-redexes as subterms, are called (β-)normal forms. The computational
process of rewriting (reducing) a λ-term to its β-normal form by successive elimination of
β-redexes is called normalisation. There exists an abundant literature on normalisation in
λ-calculus; let us mention, not exhaustively [30, 37, 33, 16, 34].

The central concepts present of formalisms dealing with normalisation in λ-calculus are
environments and closures. An environment is a list of not yet evaluated closed terms meant
to be assigned to indices 0, 1, 2, . . . ,m− 1 of an m-open λ-term. As lists, environments have
two basic operations (two basic constructors), namely � for the empty environment and
“:” for the cons operator, i.e., for the operator that put an item in front of an environment.
Those not fully evaluated closed terms are represented by closures, where a closure is a
couple consisting of an m-open λ-term and an environment. For instance, the closure 〈M,�〉
consists of the λ-term M evaluated in the context of an empty environment, denoted as �,
and represents simply M . The closure 〈0 1, 〈λλ0,�〉 : 〈λ0,�〉 : �〉 represents the λ-term
(0 1) evaluated in the context of an environment 〈λλ0,�〉 : 〈λ0,�〉 : �. Here, intuitively, the
index 0 receives the value λλ0 whereas the index 1 is assigned to λ0. Finally, λλ0 is applied
to λ0. And so, reducing the closure 〈0 1, 〈λλ0,�〉 : 〈λ0,�〉 : �〉, for instance using a Krivine
abstract machine [16] (see Section 4.1), we obtain λ0.

Let us notice that following the outlined description of environments and closures, we can
provide a formal combinatorial specification for both using the following mutually recursive
definitions:

Clos ::= 〈Λ, Env〉
Env ::= � | Clos : Env

(3.5)

3:6 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

In the above specification, Λ denotes the set of all plain λ-terms. Moreover, we introduce two
binary operators “〈 , 〉”, i.e. the coupling operator, and “:”, i.e. the cons operator, heading
its left-hand side on the right-hand list. When applied to a λ-term and an environment,
the coupling operator constructs a new closure. In other words, a closure is a couple of a
λ-term and an environment whereas an environment is a list of closures, representing a list
of assignments to free occurrences of de Bruijn indices.

Such a combinatorial specification for closures and environments plays an important
rôle as it allows us to investigate, using methods of analytic combinatorics, the quantitative
properties of both closures and environments.

4. Closures and abstract machines

Closures are one of the main ingredients of abstract machines performing reduction in
λ-calculus. In the current section, we briefly mention two such machines and discuss how
closures and environments relate to the evaluation dynamics of λ-terms.

4.1. The Krivine machine. The presentation of the Krivine machine we give here can be
found in Curien’s book [16, p. 66]. The state of the machine is a non-empty environment.
Its transitions are:

〈M N, e〉 : e′ → 〈M, e〉 : 〈N, e〉 : e′ (App)
〈λM, e〉 : 〈N, f〉 : e′ → 〈M, 〈N, f〉 : e〉 : e′ (Abs)
〈0, 〈M,f〉 : e〉 : e′ → 〈M,f〉 : e′ (Zero)
〈n+ 1, 〈M,f〉 : e〉 : e′ → 〈n, e〉 : e′ (Succ)

Interestingly, it is possible to optimise the above transition rules by merging the rules
(Zero) and (Succ) into a single rule (Fetch) given as

〈i, 〈M0, f0〉 : . . . : 〈Mi, fi〉 : . . .〉 : e′ → 〈Mi, fi〉 : e′ (Fetch)

In words, when interpreting the index i we evaluate the ith closure of the environment
associated with this index. Consequently, a sequence of i+ 1 transitions is replaced by a
single one. The above Krivine machine performs head reductions and hence implements a
call-by-name evaluation strategy. Strong normalisation can be implemented using, e.g. the
U-machine.

4.2. The U-machine. The U-machine is an abstract machine derived from the calculus of
explicit substitution λυ, see [31, 32, 4]. First, let us recall that a term of the λυ-calculus
can contain explicit substitutions in form of M [s] where M is a term and s a substitution as
in the following grammar:

M,N ::= M N | λM | n |M [s]

s ::= M/ | ⇑ (s) | ↑ .
New operators corresponding to components of explicit substitutions admit the following,
intuitive meaning. The slash operator / turns a given term into a substitution. Intuitively, it
is meant to assign the given term M to the index 0 as in 0[M/]→M . The shift operator ↑
is a constant whose role is to increment de Bruijn indices, for instance n[↑]→ n+ 1. Finally
lift, denoted as ⇑, is meant to adjust the explicit substitution in the case when it is pushed
under an abstraction. For instance, (λN)[s]→ λ(N [⇑ (s)]).

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:7

Formally, the way β-reduction and explicit substitutions work together is given by the
following rules of the λυ-calculus:

(λM)N → M [N/] (Beta)
M N [s] → M [s]N [s] (App)
(λM)[s] → λ(M [⇑ (s)]) (Abs)
0[M/] → M (FV ar)
n+ 1[M/] → n (RvAr)
0[⇑ (s)] → 0 (FV arLift)
n+ 1[⇑ (s)] → n[s][↑] (RV arLift)
n[↑] → n+ 1 (V arShift)

In the U-machine environments are modified so to fit with the features of the λυ-calculus,
especially with the shift and lift operators. Environments are still lists of operations to be
performed on variables. These operations, in turn, are pairs in form of (a, i) where i is the
number of lifts to be executed before basic actions are performed. Finally, basic actions are
of two forms; either they are a shift ↑, or a closure 〈M, e〉. In other words, closures and
environments of the U-machine are changed into:

e, f, g ::= (a, i)∗ (lists of operations)
a ::= ↑ | 〈M, e〉 (basic actions)
i ::= 0 | i+ 1 (number of lifts)

A state of the U-machine is a list 〈M, e〉∗ of pairs where M is a term and e is a list of
operations. Let (++) denote list concatenation and LiftEnv denote the map incrementing all
the second arguments of given list of pairs, i.e. a coordinate-wise function (a, i) 7→ (a, i+ 1).
Then, the transitions of the U-machine are given as follows:

〈M N, f〉 : e → 〈M,f〉 : 〈N, f〉 : e (APP)
〈λM, f〉 : 〈N, g〉 : e → 〈M, LiftEnv(f) + +[〈N, g〉]〉 : e (LBA−BET)
〈0, (a, i+ 1) : f〉 : e → 〈0, f〉 : e (FV ARLIFT)
〈n+ 1, (a, i+ 1) : f〉 : e → 〈n, (a, i) : (↑, 0) : f〉 : e (RV ARLIFT)
〈0, (〈M,f〉, 0) : g〉 : e → 〈M,f + +g〉 : e (FV AR)
〈n+ 1, (〈M,f〉, 0) : g〉 : e → 〈n, g〉 : e (RV AR)
〈n, (↑, 0) : g〉 : e → 〈n+ 1, g〉 : e (V ARSHIFT)

In the U-machine, two kind of states cannot be further reduced, i.e. states of the form
〈λN, f〉 : � (abstractions with empty stacks) and states of the form 〈n,�〉 : f (indices with
nothing in their direct environment). It is possible to further reduce those states using
strong normalisation. For that, we introduce the following inference rules which correspond
to recursive calls of the U-machine. In there inference rules,

�//
U

is a relation between

list of pairs in form of 〈M, e〉 and corresponds to the reduction to normal form. Moreover,
↓nf is a deterministic relation between a closure and a term. When we want to designate the
result N of the relation ↓nf we write nf〈M, e〉 instead of 〈M, e〉 ↓nf N .

〈M, e〉 : �
�//

U
〈λN, f〉 : �

〈M, e〉 ↓nf λ(nf〈N, LiftEnv(f)〉)

〈M, e〉 : �
�//

U
〈n,�〉 : f

〈M, e〉 ↓nf n (map nf f)

3:8 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

Actually, n (map nf f) is an abuse of notation for the successive applications of the list
map nf f on n.

5. Analytic tools

In the following section we briefly2 outline the main techniques and notions from the theory
of generating functions and singularity analysis. We refer the curious reader to [22, 41, 24]
for a thorough introduction.

Let (fn)n be a sequence of non-negative integers. Then, the generating function F (z)
associated with (fn)n is the formal power series F (z) =

∑
n≥0 fnz

n. Following standard

notational conventions, we use [zn]F (z) to denote the coefficient standing by zn in the power
series expansion of F (z). Given two sequences (an)n and (bn)n we write an ∼ bn to denote the

fact that both sequences admit the same asymptotic growth order, specifically lim
n→∞

an
bn

= 1.

Finally, we write ϕ
.
= c when the expression ϕ is approximated by the number c.

Suppose that F (z), viewed as a function of a single complex variable z, is defined in
some region Ω of the complex plane centred at z0 ∈ Ω. Then, if F (z) admits a convergent
power series expansion in form of

F (z) =
∑
n≥0

fn(z − z0)n (5.1)

it is said to be analytic at point z0. Moreover, if F (z) is analytic at each point z ∈ Ω,
then F (z) is said to be analytic in the region Ω. Suppose that there exists a function G(z)
analytic in a region Ω∗ such that Ω ∩ Ω∗ 6= ∅ and both F (z) and G(z) agree on Ω ∩ Ω∗,
i.e. F |Ω∩Ω∗ = G|Ω∩Ω∗ , where F |A is the restriction of the function F on the region A. Then,
G(z) is said to be an analytic continuation of F (z) onto Ω∗. If F (z) defined in some region
Ω \ {z0} has no analytic continuation onto Ω, then z0 is said to be a singularity of F (z).
When a formal power series F (z) =

∑
n≥0 fnz

n represents an analytic function in some
neighbourhood of the complex plane origin, it becomes possible to link the location and
type of singularities corresponding to F (z), in particular so-called dominating singularities
residing at the respective circle of convergence, with the asymptotic growth rate of its
coefficients. This process of singularity analysis developed by Flajolet and Odlyzko [21]
provides a general and systematic technique for establishing the quantitative aspects of a
broad class of combinatorial structures.

While investigating environments and closures, a particular example of algebraic combi-
natorial structures, the respective generating functions turn out to be algebraic themselves.
The following prominent tools provide the essential foundation underlying the process of
algebraic singularity analysis based on Newton-Puiseux expansions, i.e. extensions of power
series allowing fractional exponents.

Theorem 5.1 Newton, Puiseux [22, Theorem VII.7]. Let F (z) be a branch of an algebraic
equation P (z, F (z)) = 0. Then, in a circular neighbourhood of a singularity ρ slit along a
ray emanating from ρ, F (z) admits a fractional Newton-Puiseux series expansion that is

2In such a short presentation of a non-trivial theory, many terms, like “branch”, “Newton-Puiseux series”,
“locally convergent” etc. are not defined. They are defined in the references [22, 41, 24].

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:9

locally convergent and of the form

F (z) =
∑
k≥k0

ck(z − ρ)k/κ (5.2)

where k0 ∈ Z and κ ≥ 1.

Let F (z) be analytic at the origin. Note that [zn]F (z) = ρ−n[zn]F (ρz). In consequence,
following a proper rescaling we can focus on the type of singularities of F (z) on the unit
circle. The standard function scale provides then the asymptotic expansion of [zn]F (z).

Theorem 5.2 Standard function scale [22, Theorem VI.1]. Let α ∈ C \ Z≤0. Then,

F (z) = (1− z)−α admits for large n a complete asymptotic expansion in form of

[zn]F (z) =
nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O

(
1

n3

))
(5.3)

where Γ:C \ Z≤0 → C is the Euler Gamma function defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx for <(z) > 0 (5.4)

and by analytic continuation on all its domain.

Given an analytic generating function F (z) implicitly defined as a branch of an algebraic
function satisfying P (z, F (z)) = 0, our task of establishing the asymptotic expansion of
the corresponding sequence ([zn]F (z))n reduces to locating and studying the (dominating)
singularities of F (z). For generating functions analytic at the complex plane origin, this
quest simplifies even further due to the following classic result.

Theorem 5.3 Pringsheim [22, Theorem IV.6]. If F (z) is representable at the origin by a
series expansion that has non-negative coefficients and radius of convergence R, then the
point z = R is a singularity of F (z).

We can therefore focus on the real line while searching for respective singularities. Since√
z cannot be unambiguously defined as an analytic function at z = 0 we primarily focus

on roots of radicand expressions in the closed-form formulae of investigated generating
functions.

Counting λ-terms. Let us outline the main quantitative results concerning λ-terms in the
de Bruijn notation, see [7, 8, 25]. In this combinatorial model, indices are represented in a
unary encoding using the successor operator S and 0. In the so-called natural size notion [8],
assumed throughout the current paper, the size of λ-terms is defined recursively as follows:

|0| = 1
|S n| = |n| = |n|+1

|M N | = |M |+|N |+1
|λM | = |M |+1 .

And so, for example, |λ12|= 7.

Remark 5.4. We briefly remark that different size notions in the de Bruijn representation,
alternative to the assumed natural one, are considered in the literature. Among all of them,
we choose to consider the above size notion in order to minimise the technical overhead of
the overall presentation. Analytic methods employed in the current paper cover a broad
range of possible size measures. We refer the curious reader to [26, 12, 25] for a detailed
analysis of various size notions in the de Bruijn representation.

3:10 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

Let ln denote the number of plain λ-terms of size n. Consider the generating function
L∞(z) =

∑
n≥0 lnz

n. Using symbolic methods, see [22, Part A. Symbolic Methods] we note

that L∞(z) satisfies

L∞(z) = zL∞(z) + zL∞(z)2 +D(z) where D(z) =
z

1− z
=
∞∑
n=0

zn+1. (5.5)

In words, a λ-term is either (a) an abstraction followed by another λ-term, accounting for
the first summand, (b) an application of two λ-terms, accounting for the second summand,
or finally, (c) a de Bruijn index which is, in turn, a sequence of successors applied to 0.
Solving (5.5) for L∞(z) we find that the generating function L∞(z), taking into account
that the coefficients ln are positive for all n, admits the following closed-form solution:

L∞(z) =
1− z −

√
(1− z)2 − 4z

1−z

2z
. (5.6)

The first values of the coefficients of L∞ are:

1, 3, 10, 40, 181, 884, 4539, 24142, 131821, 734577, 4160626 23881695,138610418, ...

This sequence is A258973 in the Online Encyclopedia of Integer Sequences. In such a form,
L∞(z) is amenable to the standard techniques of singularity analysis. In consequence we
have the following general asymptotic approximation of ln.

Theorem 5.5 Bendkowski, Grygiel, Lescanne, Zaionc [8]. The sequence ([zn]L∞(z))n
corresponding to plain λ-terms of size n admits the following asymptotic approximation:

[zn]L∞(z) ∼ Cρ−nL∞n
−3/2 (5.7)

where

ρL∞ =
1

3

 3

√
26 + 6

√
33− 4 22/3

3

√
13 + 3

√
33

− 1

 .
= 0.29559 and C

.
= 0.60676. (5.8)

In the context of evaluation, the arguably most interesting subclass of λ-terms are
closed or, more generally, m-open λ-terms. Recall that an m-open λ-term takes one of the
following forms. Either it is (a) an abstraction followed by an (m + 1)-open λ-term, or
(b) an application of two m-open λ-terms, or finally, (c) one of the indices 0, 1, . . . ,m− 1.
Such a specification for m-open λ-terms yields the following functional equation defining the
associated generating function Lm(z):

Lm(z) = zLm+1(z) + zLm(z)2 +
1− zm

1− z
. (5.9)

Since Lm(z) depends on Lm+1(z), solving (5.9) for Lm(z) one finds that

Lm(z) =

1−
√

1− 4z2
(
Lm+1(z) + 1−zm

1−z

)
2z

. (5.10)

For instance, the first coefficients of L0(z) are

0, 0, 1, 1, 3, 6, 17, 41, 116, 313, 895, 2550, 7450, 21881, 65168, . . .

the first coefficients of L1(z) are

0, 1, 1, 3, 5, 15, 34, 98, 258, 743, 2098, 6142, 17988, 53614, 160619, . . .

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:11

and the first coefficients of L2(z) are

0, 1, 2, 3, 8, 18, 49, 130, 364, 1032, 2987, 8758, 26000, 77937, 235677, . . .

The presentation of Lm(z) given in (5.9) poses considerable difficulties as Lm(z) depends
on Lm+1(z) depending itself on Lm+2(z), etc. If developed, the formula (5.10) for Lm(z)
consists of an infinite number of nested radicals. In consequence, standard analytic combina-
torics tools do not provide the asymptotic expansion of [zn]Lm(z), in particular [zn]L0(z)
associated with closed λ-terms. In their recent breakthrough paper, Bodini, Gittenberger
and Go lȩbiewski [12] propose a clever approximation of the infinite system associated with
Lm(z) and give the following asymptotic approximation for the number of m-open λ-terms.

Theorem 5.6 Bodini, Gittenberger and Go lȩbiewski [12]. The sequence ([zn]Lm(z))n cor-
responding to m-open λ-terms of size n admits the following asymptotic approximation:

[zn]Lm(z) ∼ Cmρ−nL∞n
−3/2 (5.11)

where ρL∞ is the dominant singularity corresponding to plain λ-terms, see (5.8), and Cm is
a constant, depending solely on m.

Let us remark that for closed λ-terms, the constant C0 lies in between 0.07790995266
and 0.0779099823. In what follows, we use the above Theorem 5.6 in our investigations
regarding what we call closed closures.

6. Counting plain closures and environments

In this section we start with counting plain environments and closures, i.e. members of Env
and Clos, see (3.5). We consider a simple model in which the size of environments and
closures is equal to the total number of abstractions, applications and the sum of all the
de Bruijn index sizes. Formally, we set

|〈M, e〉| = |M |+ |e| |c : e| = |c|+ |e| |�| = 0 .

Example 6.1. The following two tables list the first few plain environments and closures.

size environments total

0 � 1
1 〈0,�〉 : � 1

〈0,�〉 : 〈0,�〉 : �
2 〈0, 〈0,�〉 : �〉 : � 4

〈λ0,�〉 : �, 〈1,�〉 : �

size closures total

0 0
1 〈0,�〉 1

〈0, 〈0,�〉〉
2 〈λ0,�〉 〈1,�〉 3

By analogy with the notation L∞ for the set of plain λ-terms, we write E∞ and C∞ to
denote the class of plain environments and closures, respectively. Reformulating (3.5) we
can now give a formal specification for both E∞ and C∞ as follows:

E∞ = C∞ : E∞ | �

C∞ = 〈L∞, E∞〉 .
(6.1)

In such a form, both classes E∞ and C∞ become amenable to the process of singularity
analysis. In consequence, we obtain the following asymptotic approximation for the number
of plain environments and closures.

3:12 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

Theorem 6.2. The numbers en and cn of plain environments and closures of size n,
respectively, admit the following asymptotic approximations:

en ∼ Ce · ρ−nn−3/2 and cn ∼ Cc · ρ−nn−3/2 (6.2)

where

Ce =

√
5
47

(
109 + 35

√
545
)

8
√
π

.
= 0.699997,

Cc =

√
10(48069

√
5−10295

√
109)

65
√

109−301
√

5
√
π
(
77− 3

√
545
) .

= 0.174999

(6.3)

and

ρ =
1

10

(
25−

√
545
)
.
= 0.165476 giving ρ−n

.
= 6.04315n. (6.4)

Proof. Consider generating functions E∞(z) and C∞(z) associated with respective counting
sequences, i.e. the sequence (en)n of plain environments of size n and (cn)n of plain closures
of size n. Based on the specification (6.1) for E∞ and C∞ and the assumed size notion, we
can write down the following system of functional equations satisfied by E∞(z) and C∞(z):

E∞(z) = C∞(z)E∞(z) + 1

C∞(z) = L∞(z)E∞(z).
(6.5)

Next, we solve (6.5) for E∞(z) and C∞(z). Though (6.5) has two formal solutions, the
following one is the single one yielding analytic generating functions with non-negative
coefficients:

E∞(z) =
1−

√
1− 4L∞(z)

2L∞(z)
and C∞(z) =

1

2

(
1−

√
1− 4L∞(z)

)
. (6.6)

Since L∞(z) > 0 for z ∈ (0, ρL∞) there are two potential sources of singularities in (6.6).
Specifically, the dominating singularity ρL∞ of L∞(z), see (5.8), or roots of the radicand
expression 1− 4L∞(z). Therefore, we have to determine whether we fall into the so-called
sub- or super-critical composition schema, see [22, Chapter VI. 9]. Solving 1− 4L∞(z) = 0
for z, we find that it admits a single solution ρ equal to

ρ =
1

10

(
25−

√
545
)
.
= 0.165476 . (6.7)

Since ρ < ρL∞ the outer radicand carries the dominant singularity ρ of both E∞(z) and
C∞(z). We fall therefore directly into the super-critical composition schema and in conse-
quence know that near ρ both E∞(z) and C∞(z) admit Newton-Puiseux expansions in form
of

E∞(z) = aE∞ + bE∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣)
and

C∞(z) = aC∞ + bC∞

√
1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣)
(6.8)

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:13

with aE∞ , aC∞ > 0 and bE∞ , bC∞ < 0. At this point, we can apply the standard function
scale, see Theorem 5.2, to the presentation of E∞(z) and C∞(z) in (6.8) and conclude that

[zn]E∞(z) ∼ CE∞ρ−nn−3/2 and [zn]C∞(z) ∼ CC∞ρ−nn−3/2 (6.9)

where CE∞ =
bE∞

Γ(−1
2)

and CC∞ =
bC∞

Γ(−1
2)

, respectively, with Γ(−1
2) = 2

√
π. In fact,

reformulating (6.6) so to fit the Newton-Puiseux expansion forms (6.8) we find that

aE∞ = 2, bE∞ = −1

4

√
5

47

(
109 + 35

√
545
)

(6.10)

and

aC∞ =
1

2
, bC∞ =

2

√
10(48069

√
5−10295

√
109)

65
√

109−301
√

5

3
√

545− 77
(6.11)

Numerical approximations of CE∞ =
bE∞

Γ(−1
2)

and CC∞ =
bC∞

Γ(−1
2)

yield the declared asymp-

totic behaviour of (en)n and (cn)n, see (6.2).

Let us notice that as both generating functions E∞(z) and C∞(z) are algebraic, they are
also holonomic (D-finite), i.e. satisfy differential equations with polynomial (in terms of z)
coefficients. Using the powerful gfun library for Maple [38] one can automatically derive
appropriate holonomic equations for E∞(z) and C∞(z), subsequently converting them into
linear recurrences for sequences (en)n and (cn)n.

Example 6.3. We restrict the presentation to the linear recurrence for the number of plain
environments, omitting for brevity the, likely verbose, respective recurrence for plain closures.
Using gfun we find that en satisfies the recurrence of Figure 3. Despite its appearance, this
recurrence is an efficient way of computing en. Indeed, holonomic specifications for C∞(z)
and E∞(z) allow computing the coefficients [zn]C∞(z) and [zn]E∞(z) using a linear number
of arithmetic operations, as opposed to a quadratic number of operations as following their
direct combinatorial specification. Let us remark that the involved computations operate
on large integers, which have a linear in n space representation. For instance, e1000 has
about 600 digits. In consequence, single arithmetic operations on such numbers cannot be
performed in constant time.

7. Random generation of closures and environments

Effective counting methods for various discrete structures are among the most prominent
and ubiquitous subjects in combinatorics. Although interesting in their own right, such
counting methods (and in particular related algorithms) exhibit important benefits in the
context of generating random instances of corresponding combinatorial structures. Let us
mention, for instance, the successive use of random λ-terms used to disprove the correctness
of eagerness optimisations of the salient Glasgow Haskell Compiler, see [36].

Given the fact that closures and environments are fundamental data structures used
in different abstract machines related to the execution of λ-terms, random closures and
environments can be used to model (in other words simulate) actual data encountered
in the execution traces of abstract machines such as the Krivine or U-machines. In this
context, random generation of closures and environments provide effective means of testing

3:14 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

(125n3 − 125n) en +

(−475n3 − 150n2 + 325n) en+1 +

(−1625n3 − 13650n2 − 29125n− 17100) en+2 +

(5925n3 + 65550n2 + 204825n+ 190800) en+3 +

(−10950n3 − 149850n2 − 609000n− 744300) en+4 +

(43599n3 + 638460n2 + 3028701n+ 4633680) en+5 +

(−97781n3 − 1680378n2 − 9481237n− 17550960) en+6 +

(122749n3 + 2388066n2 + 15211685n+ 31648968) en+7 +

(−184402n3 − 3954630n2 − 27717140n− 63149544) en+8 +

(280081n3 + 6826380n2 + 54868451n+ 145130568) en+9 +

(−205649n3 − 5654610n2 − 51851989n− 158722620) en+10 +

(37439n3 + 1339686n2 + 16635271n+ 70682784) en+11 +

(−68686n3 − 3028038n2 − 43616336n− 205972920) en+12 +

(222029n3 + 9258780n2 + 128417911n+ 592399800) en+13 +

(−241115n3 − 10519830n2 − 152823475n− 739190880) en+14 +

(134151n3 + 6201222n2 + 95476551n+ 489605640) en+15 +

(−42231n3 − 2067834n2 − 33729375n− 183277332) en+16 +

(7470n3 + 386418n2 + 6659316n+ 38233296) en+17 +

(−678n3 − 36972n2 − 671670n− 4065240) en+18 +

(24n3 + 1380n2 + 26436n+ 168720) en+19 = 0.

e0 = 1,
e1 = 1,
e2 = 4,
e3 = 17,
e4 = 77,
e5 = 364,
e6 = 1776,
e7 = 8881,
e8 = 45296,
e9 = 234806,

e10 = 1233816,
e11 = 6558106,
e12 = 35202448,
e13 = 190568779,
e14 = 1039296373,
e15 = 5704834700,
e16 = 31494550253,
e17 = 174759749005,
e18 = 974155147162.

Figure 3: Linear recurrence defining en with corresponding initial conditions.

the correctness of respective abstract machine implementations as well as facilitate their
optimisation and eventual perfection.

With analytic generating functions C∞(z) and E∞(z) for plain closures and environments,
respectively, it becomes possible to design efficient exact- or approximate-size samplers

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:15

(i.e. algorithms constructing random structures) corresponding to both combinatorial classes.
In particular, we can use the general frameworks of Boltzmann samplers [20] by Duchon et
al. or the so-called recursive method [35, 23] of Nijenhuis and Wilf. Remarkably, in both
frameworks the sampler design resembles the recursive structure of the target combinatorial
specification. Moreover, for a broad class of discrete structures such as, for instance, algebraic
specifications, the sampler construction itself can be effectively automatised. Respective
branching probabilities dictating the sampler’s decisions are precomputed once and fixed
throughout all subsequent executions.

In the recursive method, branching probabilities are established so to obtain an exact-size
sampler, i.e. a sampler which generates random structures of a specific, given size n. In
particular, using holonomic specifications for C∞(z) and E∞(z) it is possible to compute the
related coefficients [zn]C∞(z) and [zn]E∞(z) using just O(n) arithmetic operations, thus
reach larger target sizes in a reasonable amount of time. On the other hand, if we drop the
exact-size requirement of the outcome structures, it is possible to (again, automatically)
construct an approximate-size Boltzmann sampler generating closures (respectively environ-
ments) of varying size in linear time, in terms of outcome size. Although the output size of
constructed objects is itself random, it is possible to calibrate its expectation around a (not
necessarily) finite mean. Furthermore, using an optional rejection phase, meant to dismiss
inadmissible structures, it is possible to gain additional control over the sampler outcome.

Remarkably, both mentioned sampler frameworks admit effective tuning procedures
influencing the expected internal shape of constructed objects, e.g. frequencies of desired
sub-patterns [6]. It is therefore possible to control the expected internal structure of the
generated closures and environments.

We offer prototype sampler implementations for plain environments and closures, within
the above sampler frameworks at Github3. Likewise, we provide similar samplers for so-called
closed closures and environments (see Section 8) based on the recursive method.

8. Counting closed closures

A closure 〈M, e〉 is said to be m-open, denoted also as 〈M, e〉 ∈ Closm, if there exists a
non-negative p such that M ∈ Lm+p (i.e. M is an (m+ p)-open λ-term) and e is a finite list
(i.e. environment) of length p consisting itself of m-open closures. In other words, m-open
closures are structures defined by means of the following implicit combinatorial specification:

Closm ::= Lm ×� | Lm+1 × 〈Closm〉 | Lm+2 × 〈Closm, Closm〉 | · · · (8.1)

In particular, a closure is said to be closed4 if it is 0-open. Like in the case of m-open
λ-terms, if a closure 〈M, e〉 is m−open, then it is also (m+ 1)-open. Consider the following
example:
Example 8.1.

• 〈0 1, 〈λ3〉 : �〉 is a 3-open closure.
• 〈1 0, 〈λ0,�〉 : 〈λλ0,�〉 : �〉 is a closed closure (0-open closure).

Let us remark that an m-open closure corresponds to a not yet evaluated m-open λ-term.
Certainly, due to their ubiquity in the context of abstract machines, the most interesting

3https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
4We acknowledge that speaking of closed closures is a bit odd, however terms “closure” and “closed” form

a consecrated terminology that we merely associate together.

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

3:16 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

m-open closures are in fact closed. In the current section, we focus therefore on counting
closed closures and corresponding closed environments.

Example 8.2. The following table lists the first few closed closures.

size closures total

0, 1 0
2 〈λ0,�〉 1
3 〈λλ0,�〉 〈0, 〈λ0,�〉〉 2

〈λλλ0,�〉 〈λλ1,�〉 〈λ(00),�〉
4 〈λ0, 〈λ0,�〉〉 〈0, 〈λλ0,�〉〉 〈0, 〈0, 〈λ0,�〉〉〉 6

Figure 4 gives the first 50 numbers of closed closures.

n c0,n n c0,n

0 0 25 2039291268600
1 0 26 7690787869550
2 1 27 29071665271653
3 2 28 110130490287410
4 6 29 418043342219865
5 18 30 1589843149170521
6 58 31 6056959298323505
7 188 32 23113998858734867
8 630 33 88343015816573484
9 2140 34 338147576768474959

10 7384 35 1296106542004047500
11 25775 36 4974412840517200748
12 90919 37 19115189068830345885
13 323529 38 73539781161982872915
14 1160285 39 283234718823200209560
15 4189666 40 1092009621308203935814
16 15221235 41 4214435736178031843666
17 55602475 42 16280366813995192858378
18 204119165 43 62947860010954764058213
19 752691547 44 243596693995304845906020
20 2786900678 45 943448667650667612945764
21 10357265495 46 3656836859592859541767133
21 38623769249 47 14184639891328996401070032
23 144488013135 48 55060786067960705278258741
24 542090016461 49 213877295469617703331719718

Figure 4: The number of closed closures for n = 0, . . . , 49

Establishing the asymptotic growth rate of the sequence (c0,n)n corresponding to closed
closures of size n poses a considerable challenge, much more involved than its plain counter-
part. In the following theorem we show that there exists two constants ρ, ρ < ρL∞ such that

lim
n→∞

ρ−n

c0,n
= 0 and lim

n→∞

c0,n

ρ−n
= 0. In other words, the asymptotic growth rate of (c0,n)n is

bounded by two exponential functions of n.

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:17

Theorem 8.3. There exist ρ < ρ satisfying ρ < ρ < ρL∞ and functions θ(n), κ(n) satisfying

lim sup
n→∞

θ(n)1/n = lim sup
n→∞

κ(n)1/n = 1 such that for sufficiently large n we have ρ−nθ(n) <

c0,n < ρ−nκ(n).

Proof. Let us start with the generating function C0(z) associated with closed closures Clos0.
Note that from the specification (8.1), instantiated to m = 0, C0(z) is implicitly defined as

C0(z) =
∑
m≥0

Lm(z)C0(z)m. (8.2)

We can therefore identify a closed closure c with a tuple (t, c1, . . . , cm) where m ≥ 0, t is an
m-open λ-term and c1, . . . , cm are closed closures themselves. We proceed with defining two
auxiliary lower and upper bound classes C0(z) and C0(z) such that [zn]C0(z) ≤ [zn]C0(z) ≤
[zn]C0(z) for all n. Next, we establish their asymptotic behaviour and, in doing so, provide
exponential lower and upper bounds on the growth rate of closed closures.

We start with C0(z) =
∑

m≥0 L0(z)C0(z)m. Note that C0(z) is associated with closures
in which each term is closed, independently of the corresponding environment length. Hence,
as closed λ-terms are m-open for all m ≥ 0, we have [zn]C0(z) ≤ [zn]C0(z). Furthermore

C0(z) =
∑
m≥0

L0(z)C0(z)m = L0(z)
∑
m≥0

C0(z)m =
L0(z)

1− C0(z)
. (8.3)

Solving the above equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L0(z)

)
. In such a

form, it is clear that there are two potential sources of singularities, i.e. the singularity ρL∞
of L0(z), see Theorem 5.6, or the roots of the radicand 1− 4L0(z). Since L0(z) is increasing
and continuous in the interval (0, ρL∞) we know that if L0(ρL∞) > 1

4 then there exists a

ρ < ρL∞ such that L0(ρ) = 1
4 . Unfortunately, we cannot simply check that L0(ρL∞) > 1

4 as
there exists no known method of evaluating L0(z), defined by means of an infinite system of
equations, at a given point. For that reason we propose the following approach.

Recall that a λ-term M is said to be h-shallow if all its de Bruijn index values are

(strictly) bounded by h, see [25]. Let L
(h)
m (z) denote the generating function associated with

m-open h-shallow λ-terms. Note that L
(h)
0 (z), i.e. the generating function corresponding to

closed h-shallow λ-terms, has a finite computable representation. Indeed, we have

L
(h)
0 (z) = zL

(h)
1 (z) + zL

(h)
0 (z)L

(h)
0 (z)

L
(h)
1 (z) = zL

(h)
2 (z) + zL

(h)
1 (z)L

(h)
1 (z) + z

L
(h)
2 (z) = zL

(h)
3 (z) + zL

(h)
2 (z)L

(h)
2 (z) + z + z2

. . .

L
(h)
h−1(z) = zL

(h)
h (z) + zL

(h)
h−1(z)L

(h)
h−1(z) + z + z2 + · · ·+ zh−1

L
(h)
h (z) = zL

(h)
h (z) + zL

(h)
h (z)L

(h)
h (z) + z + z2 + · · ·+ zh

(8.4)

Consider m < h. Each m-open h-shallow λ-term is either (a) in form of λM where M is an
(m+ 1)-open h-shallow λ-term due to the head abstraction, (b) in form of MN where both
M and N are m-open h-shallow λ-terms, or (c) a de Bruijn index in the set {0, 1, . . . ,m− 1}.
When m = h, we have the same specification with the exception of the first summand

3:18 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

zL
(h)
h (z) where, as we cannot exceed h, terms under abstractions are h-open, instead of

(h+ 1)-open.

Using such a form it is possible to evaluate L
(h)
0 (z) at each point z ∈ (0, ρ(h)) where

ρ(h) > ρL∞ is the dominating singularity of L
(h)
0 (z) satisfying ρ(h) −−−→

h→∞
ρ, see [25]. Certainly,

each closed h-shallow λ-term is in particular a closed λ-term. In consequence, [zn]L
(h)
0 (z) ≤

[zn]L0(z) for each n. Moreover, for all sufficiently large n we have [zn]L
(h)
0 (z) < [zn]L0(z).

This coefficient-wise lower bound transfers onto the level of generating function values and

we obtain L
(h)
0 (z) < L0(z). Following the same argument, we also have L

(h)
0 (z) < L

(h+1)
0 (z)

for each h ≥ 1. We can therefore use L
(h)
0 (z) to approximate L0(z) from below — the higher

h we choose, the better approximation we obtain. Using computer algebra software5 it is

possible to automatise the evaluation process of L
(h)
0 (ρL∞) for increasing values of h and

find that for h = 153 we obtain

L
(153)
0 (ρL∞)

.
= 0.25000324068941554 . (8.5)

Hence indeed, the asserted existence of ρ < ρL∞ such that L0(ρ) = 1
4 follows (interestingly,

taking h = 152 does not suffice as L152
0 (ρL∞) < 1

4). We fall hence in the super-critical

composition schema6 and note that C0(z) admits a Newton-Puiseux expansion near ρ as
follows:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (8.6)

for some constants a0 > 0 and b0 < 0. Hence, [zn]C0(z) grows asymptotically faster than

ρ−nθ(n) where θ(n) =
b0

Γ(−1
2)
n−3/2.

For the upper bound we consider C0(z) =
∑

m≥0 L∞(z)C0(z)
m

, i.e. the generating

function associated with closures in which all terms are plain (either closed or open),
independently of the constraint imposed by the corresponding environment length. Following
the same arguments as before, we note that [zn]C0(z) > [zn]C0(z). Now

C0(z) =
∑
m≥0

L∞(z)C0(z)
m

= L∞(z)
∑
m≥0

C0(z)
m

=
L∞(z)

1− C0(z)
. (8.7)

Solving the equation for C0(z) we find that C0(z) = 1
2

(
1−

√
1− 4L∞(z)

)
. Note that

in this case, we can easily handle the radicand expression 1 − 4L∞(z) and find out that,
as in the lower bound case, we are in the super-critical composition schema. Specifically,
ρ = 1

10

(
25−

√
545
) .

= 0.165476, cf. (6.4), is the dominating singularity of C0(z). In

consequence, C0(z) admits the following Newton-Puiseux expansion near ρ:

C0(z) = a0 − b0
√

1− z

ρ
+O

(∣∣∣∣1− z

ρ

∣∣∣∣) (8.8)

5https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments
6Supercriticality ensures that meromorphic asymptotics applies and entails strong statistical regularities

(see [22] Section V.2 and Section IX.6).

https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:19

for some constants a0 > 0 and b0 < 0. In conclusion, [zn]C0(z) grows asymptotically slower

than (ρ)−nθ(n) where θ(n) =
b0

Γ(−1
2)
n−3/2, finishing the proof.

With an implicit expression defining C0(z), see (8.2), efficient random generation of
closed closures poses a difficult task. Though we have no efficient Boltzmann samplers, it is
possible to follow the recursive method and obtain exact-size samplers for a moderate range
of target sizes. We offer a prototype sampler of this kind, available at Github7.

9. Conclusions

We view our contribution as a small step towards the quantitative, average-case analysis
of evaluation complexity in λ-calculus. Using standard tools from analytic combinatorics,
we investigated some combinatorial aspects of environments and closures — fundamental
structures present in various formalisms dealing with normalisation in λ-calculus, especially
in its variants with explicit substitutions [31, 10]. Though plain environments and closures
are relatively easy to count and generate, their closed counterparts pose a considerable
combinatorial challenge. The implicit and infinite specification of closed closures based on
closed λ-terms complicates significantly the quantitative analysis, namely estimating the
exponential factor in the asymptotic growth rate, or effectively generating random closed
closures. In particular, getting more parameters of the asymptotic growth will require more
sophisticated methods, like, for instance, the recent infinite system approximation techniques
of Bodini, Gittenberger and Go lȩbiewski [12].

References

[1] Beniamino Accattoli and Ugo Dal Lago. (Leftmost-Outermost) beta reduction is invariant, indeed.
Logical Methods in Computer Science, 12(1), 2016. doi:10.2168/LMCS-12(1:4)2016.

[2] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of functional programs:
higher-order meets first-order. In Kathleen Fisher and John H. Reppy, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada., pages 152–164. ACM, 2015. doi:10.1145/2784731.2784753.

[3] Martin Avanzini and Georg Moser. Closing the gap between runtime complexity and polytime
computability. In Christopher Lynch, editor, Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scottland, UK,
volume 6 of LIPIcs, pages 33–48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010. doi:

10.4230/LIPIcs.RTA.2010.33.
[4] Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and Jocelyne Rouyer-Degli. λυ, a calculus

of explicit substitutions which preserves strong normalisation. Journal of Functional Programming,
6(5):699-722, 1996. doi:10.1017/S0956796800001945.

[5] Maciej Bendkowski. Normal-order reduction grammars. Journal of Functional Programming, 27, 2017.
doi:10.1017/S0956796816000332.

[6] Maciej Bendkowski, Olivier Bodini, and Sergey Dovgal. Polynomial tuning of multiparametric combi-
natorial samplers. In Markus E. Nebel and Stephan G. Wagner, editors, Proceedings of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics, ANALCO 2018, New Orleans, LA, USA,
January 8-9, 2018., pages 92–106. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975062.9,
doi:10.1137/1.9781611975062.9.

7https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1145/2784731.2784753
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.33
http://dx.doi.org/10.1017/S0956796800001945
http://dx.doi.org/10.1017/S0956796816000332
https://doi.org/10.1137/1.9781611975062.9
http://dx.doi.org/10.1137/1.9781611975062.9
https://github.com/PierreLescanne/CountingAndGeneratingClosuresAndEnvironments

3:20 Maciej Bendkowski and Pierre Lescanne Vol. 15:4

[7] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. A natural counting of
lambda terms. In Theory and Practice of Computer Science: 42nd International Conference on Current
Trends in Theory and Practice of Computer Science, SOFSEM, pages 183–194. Springer Berlin Heidelberg,
2016.

[8] Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc. Combinatorics of λ-terms:
a natural approach. Journal of Logic and Computation, 27(8):2611–2630, 2017. doi:10.1093/logcom/
exx018.

[9] Maciej Bendkowski, Katarzyna Grygiel, and Marek Zaionc. On the likelihood of normalization in
combinatory logic. Journal of Logic and Computation, 2017. doi:10.1093/logcom/exx005.

[10] Maciej Bendkowski and Pierre Lescanne. Combinatorics of explicit substitutions. In David Sabel
and Peter Thiemann, editors, Proceedings of the 20th International Symposium on Principles and
Practice of Declarative Programming, PPDP 2018, Frankfurt am Main, Germany, September 03-
05, 2018, pages 7:1–7:12. ACM, 2018. URL: http://doi.acm.org/10.1145/3236950.3236951, doi:

10.1145/3236950.3236951.
[11] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda-terms of bounded unary height.

In Philippe Flajolet and Daniel Panario, editors, Proceedings of the Eighth Workshop on Analytic
Algorithmics and Combinatorics, ANALCO 2011, San Francisco, California, USA, January 22, 2011,
pages 23–32. SIAM, 2011. doi:10.1137/1.9781611973013.3.

[12] Olivier Bodini, Bernhard Gittenberger, and Zbigniew Go lȩbiewski. Enumerating lambda terms by
weighted length of their de bruijn representation. CoRR, abs/1707.02101, 2017. URL: https://arxiv.
org/abs/1707.02101.

[13] Christine Choppy, Stéphane Kaplan, and Michèle Soria. Algorithmic complexity of term rewriting systems.
In Pierre Lescanne, editor, Rewriting Techniques and Applications, 2nd International Conference, RTA-
87, Bordeaux, France, May 25-27, 1987, Proceedings, volume 256 of Lecture Notes in Computer Science,
pages 256–273. Springer, 1987. doi:10.1007/3-540-17220-3_22.

[14] Christine Choppy, Stéphane Kaplan, and Michèle Soria. Complexity analysis of term-rewriting systems.
Theor. Comput. Sci., 67(2&3):261–282, 1989. doi:10.1016/0304-3975(89)90005-4.

[15] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of haskell programs.
In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming, pages
268–279. ACM, 2000.

[16] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Functional Programming (2nd
Ed.). Birkhauser Boston Inc., Cambridge, MA, USA, 1994.

[17] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM, 43(2):362–397, March 1996. doi:10.1145/226643.
226675.

[18] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume Theyssier, and Marek
Zaionc. Asymptotically almost all λ-terms are strongly normalizing. Logical Methods in Computer
Science, 9:1–30, 2013.

[19] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae (Proceedings),
75(5):381–392, 1972.

[20] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann samplers for the
random generation of combinatorial structures. Combinatorics, Probability and Computing, 13(4-5):577–
625, 2004.

[21] Philippe Flajolet and Andrew M. Odlyzko. Singularity analysis of generating functions. SIAM Journal
on Discrete Mathematics, 3(2):216–240, 1990.

[22] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, 1 edition,
2009.

[23] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random generation
of labelled combinatorial structures. Theoretical Computer Science, 132(1):1–35, 1994.

[24] Étienne Ghys. A singular mathematical promenade. Ecole Normale Supérieure, 2017. URL: http:

//perso.ens-lyon.fr/ghys/promenade/.
[25] Bernhard Gittenberger and Zbigniew Go lȩbiewski. On the number of lambda terms with prescribed

size of their de Bruijn representation. In 33rd Symposium on Theoretical Aspects of Computer Science,
STACS, pages 40:1–40:13, 2016.

http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx018
http://dx.doi.org/10.1093/logcom/exx005
http://doi.acm.org/10.1145/3236950.3236951
http://dx.doi.org/10.1145/3236950.3236951
http://dx.doi.org/10.1145/3236950.3236951
http://dx.doi.org/10.1137/1.9781611973013.3
https://arxiv.org/abs/1707.02101
https://arxiv.org/abs/1707.02101
http://dx.doi.org/10.1007/3-540-17220-3_22
http://dx.doi.org/10.1016/0304-3975(89)90005-4
http://dx.doi.org/10.1145/226643.226675
http://dx.doi.org/10.1145/226643.226675
http://perso.ens-lyon.fr/ghys/promenade/
http://perso.ens-lyon.fr/ghys/promenade/

Vol. 15:4 ENUMERATION OF CLOSURES AND ENVIRONMENTS 3:21

[26] Katarzyna Grygiel and Pierre Lescanne. Counting and generating terms in the binary lambda calculus.
Journal of Functional Programming, 25, 2015. doi:10.1017/S0956796815000271.

[27] Donald E. Knuth. Mathematical Analysis of Algorithms, 2000. First chapter of [28].
[28] Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of CSLI Lecture Notes. Stanford,

California: Center for the Study of Language and Information, 2000.
[29] Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the lambda calculus. Logical

Methods in Computer Science, 8(3), 2012. doi:10.2168/LMCS-8(3:12)2012.
[30] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–320, 1964.

doi:10.1093/comjnl/6.4.308.
[31] Pierre Lescanne. From λσ to λυ: A journey through calculi of explicit substitutions. In Proceedings of

the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 60–69.
ACM, 1994.

[32] Pierre Lescanne. The lambda calculus as an abstract data type. In Magne Haveraaen, Olaf Owe, and
Ole-Johan Dahl, editors, Recent Trends in Data Type Specification, 11th Workshop on Specification of
Abstract Data Types Joint with the 8th COMPASS Workshop, Oslo, Norway, September 19-23, 1995,
Selected Papers, volume 1130 of Lecture Notes in Computer Science, pages 74–80. Springer, 1995. URL:
https://doi.org/10.1007/3-540-61629-2_37, doi:10.1007/3-540-61629-2_37.

[33] Michel Mauny and Ascánder Suárez. Implementing functional languages in the categorical abstract
machine. In LISP and Functional Programming, pages 266–278, 1986.

[34] John C. Mitchell. Concepts in Programming Language (1st Ed.). Cambridge University Press, New York,
NY, USA, 2002.

[35] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, 2 edition, 1978.
[36] Micha l H. Pa lka. Random Structured Test Data Generation for Black-Box Testing. PhD thesis, Chalmers

University of Technology, 2012.
[37] Gordon David Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,

1(2):125 – 159, 1975. doi:https://doi.org/10.1016/0304-3975(75)90017-1.
[38] Bruno Salvy and Paul Zimmermann. Gfun: a Maple package for the manipulation of generating and

holonomic functions in one variable. ACM Transactions on Mathematical Software, 20(2):163–177, 1994.
[39] Robert Sedgewick and Philippe Flajolet. An Introduction to the Analysis of Algorithms (2nd Edition).

Createspace Independent Pub, 2014.
[40] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex algorithm

usually takes polynomial time. J. ACM, 51(3):385–463, 2004. URL: http://doi.acm.org/10.1145/
990308.990310, doi:10.1145/990308.990310.

[41] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., 2006.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

http://dx.doi.org/10.1017/S0956796815000271
http://dx.doi.org/10.2168/LMCS-8(3:12)2012
http://dx.doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1007/3-540-61629-2_37
http://dx.doi.org/10.1007/3-540-61629-2_37
http://dx.doi.org/https://doi.org/10.1016/0304-3975(75)90017-1
http://doi.acm.org/10.1145/990308.990310
http://doi.acm.org/10.1145/990308.990310
http://dx.doi.org/10.1145/990308.990310

	1. Introduction
	2. A combinatoric approach to higher order rewriting systems
	3. Environments and closures
	3.1. De Bruijn notation
	3.2. Closures and `b-reduction

	4. Closures and abstract machines
	4.1. The Krivine machine
	4.2. The U-machine

	5. Analytic tools
	Counting `l-terms

	6. Counting plain closures and environments
	7. Random generation of closures and environments
	8. Counting closed closures
	9. Conclusions
	References

