2 research outputs found

    On the Efficiency tradeoffs in User-Centric Cloud RAN

    Get PDF
    Ambitious targets for aggregate throughput, energy efficiency and ubiquitous user experience are propelling the advent of ultra-dense networks. Intercell interference and high energy consumption in an ultra-dense network are the prime hindering factors in pursuit of these goals. To address the aforementioned challenges, in this paper, we propose a novel user-centric network orchestration solution for Cloud RAN based ultra-dense deployments. In this solution, a cluster (virtual disc) is created around users depending on their service priority. Within the cluster radius, only the best remote radio head (RRH) is activated to serve the user, thereby decreasing interference and saving energy. We use stochastic geometry based approach to quantify the area spectral efficiency (ASE) and RRH power consumption models to quantity energy(EE) efficiency of the proposed user-centric Cloud RAN (UCRAN). Through extensive analysis we observe that the cluster sizes that yield optimal ASE and EE are quite different. We propose a game theoretic self-organizing network (GT-SON) framework that can orchestrate the network between ASE and EE focused operational modes in real-time in response to changes in network conditions and the operator's revenue model, to achieve a Pareto optimal solution. A bargaining game is modeled to investigate the ASE-EE tradeoff through adjustment in the exponential efficiency weightage in the Nash bargaining solution (NBS). Results show that compared to current non-user centric network design, the proposed solution offers the flexibility to operate the network at multiple folds higher ASE or EE along with significant improvement in user experience

    Enhancing Downlink QoS and Energy Efficiency through a User-Centric Stienen Cell Architecture for mmWave Networks

    Get PDF
    This paper presents an analytical framework for performance characterization of a novel Stienen cell based user-centric architecture operating in millimeter wave spectrum. In the proposed architecture, at most one remote radio head (RRH) is activated within non overlapping user equipment (UE)-centric Stienen cells (S-cells) generated within the Voronoi region around each UE. Under the presented framework, we derive analytical models for the three key performance indicators (KPIs): i) SINR distribution (used as an indicator for quality of service (QoS)), ii) area spectral efficiency (ASE), and iii) energy efficiency (EE) as a function of the three major design parameters in the proposed architecture, namely UE service probability, S-cell radius coefficient and RRH deployment density. The analysis is validated through extensive Monte Carlo simulations. The simulation results provide practical design insights into the interplay among the three design parameters, tradeoffs among the three KPIs, sensitivity of each KPI to the design parameters as well as optimal range of the design parameters. Results show that compared to current non user-centric architectures, the proposed architecture not only offers significant SINR gains, but also the flexibility to meet diverse UE specific QoS requirements and trade between EE and ASE by dynamically orchestrating the design parameters
    corecore