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Abstract—Ambitious targets for aggregate throughput, energy
efficiency and ubiquitous user experience are propelling the
advent of ultra-dense networks. Intercell interference and high
energy consumption in an ultra-dense network are the prime
hindering factors in pursuit of these goals. To address the
aforementioned challenges, in this paper, we propose a novel
user-centric network orchestration solution for Cloud RAN based
ultra-dense deployments. In this solution, a cluster (virtual disc) is
created around users depending on their service priority. Within
the cluster radius, only the best remote radio head (RRH) is
activated to serve the user, thereby decreasing interference and
saving energy. We use stochastic geometry based approach to
quantify the area spectral efficiency (ASE) and RRH power
consumption models to quantity energy(EE) efficiency of the
proposed user-centric Cloud RAN (UCRAN). Through extensive
analysis we observe that the cluster sizes that yield optimal ASE
and EE are quite different. We propose a game theoretic self-
organizing network (GT-SON) framework that can orchestrate
the network between ASE and EE focused operational modes in
real-time in response to changes in network conditions and the
operator’s revenue model, to achieve a Pareto optimal solution. A
bargaining game is modeled to investigate the ASE-EE tradeoff
through adjustment in the exponential efficiency weightage in the
Nash bargaining solution (NBS). Results show that compared to
current non user-centric network design, the proposed solution
offers the flexibility to operate the network at multiple folds
higher ASE or EE along with significant improvement in user
experience.

Index Terms—User-centric architectures, Cloud RAN, Poisson
Point Process, Area Spectral Efficiency, Energy Efficiency, Nash
Bargaining Solution

I. INTRODUCTION

Cell-free user-centric networks are envisioned as enablers

for interference management in ultra-dense 5th generation

(5G) cellular networks. In particular, signal degradation for

cell-edge users that is considered a limiting factor in LTE is

addressed by structural evolution of the 5G networks designed

from the users’ (rather than base stations’) perspective [1].

Operationally, each served user within a user-centric network

is connected to one or more small cells in the vicinity defined

by an elastic virtual user-centric cell boundary [2][3]. The

virtual user-centric cell size is adaptable with respect to user

traffic, channel environment and quality of service (QoS)

requirements.

While the 5G systems target multiple fold increase in data

rate, millisecond level latency and support for up to 500 km/hr

user mobility; all this must be achieved with an improvement

in spectral efficiency and reduced operational costs [4]. One

enabling technology to meet these goals is Cloud-RAN (C-

Fig. 1. User-centric C-RAN architecture

RAN) which is based on separating Baseband Units (BBUs)

from the radio access units [5][6]. The BBUs are migrated to

the cloud forming a BBU pool for centralized processing and

resource allocation. C-RAN provides the network scalability

for large scale remote radio head (RRH) deployment in dense

networks at lower operational costs.

User-centric virtual cell approach coupled with centralized

baseband processing via C-RAN deployment is an ideal

merger to meet 5G’s ubiquitous user experience targets within

realistic energy and cost constraints. Fig.1 provides a graphical

illustration of a User-centric Cloud RAN (UCRAN) net-

work with virtual user-centric cell boundaries. The RRHs

are connected to the pool of BBUs via flexible front haul.

The front haul is usually an optical fiber where signaling is

done using radio-over-fiber (RoF) or common public radio

interface (CPRI) [6]. Most of the signal processing at baseband

level is delegated to the BBUs. The key idea here is to

dynamically select the best RRH within a circular area (virtual

cell) with a pre-defined radius RCLR around users selected

for downlink transmission during each scheduling interval

(used interchangeably with time slot and TTI). All other

RRHs within the circle here after called cluster are kept

OFF thereby minimizing the interference. The aforementioned

UCRAN architecture provides two-fold benefits: i) on-demand

centralized processing at the BBU pools caters to non-uniform

user traffic that subsequently enables OPEX reduction by as

much as 30% [7], ii) user-centric RRH clustering reduces the

number of nearby interfering RRHs and eliminates cell-edge

coverage issues, hence improving the overall user experience

regardless of user location and movement [8]. The game

theoretic self-organizing (GT-SON) engine in fig.1 enables

dynamic adaptation of RCLR in order to either enhance



the overall system throughput or the energy efficiency (EE).

The cluster size selection is dependent upon the network

operator’s spatio-temporal revenue model which may include

traffic intensity, time of the day and hotspot locations (e.g.

cafes, stadiums) [9].

The key research question at hand is determining the

optimal cluster size around a scheduled user. The cluster size

C = πR2
CLR determines the interference free region around

each scheduled user. Increasing the RRH cluster size offers

the following gains: 1) larger distances between MUs and

interfering RRHs results in larger link SINR and thus, better

link throughput, and 2) a larger RRH cluster size yields more

macro diversity gain or cooperative gain through selection

or cooperation among larger number of RRHs in the cluster,

respectively. However, the downside of a larger RRH cluster

size is reduced spectrum reuse and reduced number of MUs

that can be served simultaneously which, in turn, reduces

system level capacity. Hence with a larger cluster, there are

fewer high quality links as opposed to many low bit-rate links

(which occur with a smaller cluster).

In the back drop of these insights the goal of this paper is

to investigate following research questions: 1) What are the

optimal RRH cluster sizes that maximize KPIs of capacity

(in terms of area spectral efficiency (ASE)), energy efficiency

(EE) and the user quality of experience (QoE)? 2) Given that

the optimal RRH cluster sizes for all the three KPIs is expected

to be different, how to design the pareto-optimal solution that

achieves the desired balance among aforementioned KPIs?

While recent relevant works address transmit power control

[10], interference alignment [11], dynamic load balancing [12]

and optimal cluster dimensioning strategies [8][13][1], to the

best of the authors’ knowledge, we are the first to simulta-

neously investigate the intertwined KPIs, i.e. ASE, EE and

QoE in ultra-dense user-centric networks. The contributions

and findings of this work are summarized as follows:

A. Contributions and Organization

• By employing well established stochastic geometry prin-

ciples [14], we characterize the ASE and EE of a UCRAN

system as a function of the mobile user (MU) and RRH

deployment distributions. The analytical model takes into

account both MU and RRH thinning arising from the

user-centric RRH clustering performed in the centralized

BBU pools during each TTI.

• The ASE-EE tradeoff in a UCRAN is modeled through a

two-player bargaining problem. The performance metrics

are modeled as virtual game players and a Nash bargain-

ing solution is found that corresponds to a unique optimal

cluster radius for a given set of network parameters.

• Based on our analysis, we advocate the gains of dynamic

adaptation of the ASE-EE tradeoff by integrating a GT-

SON engine within the BBU pools. Through an expo-

nential weightage parameter, the GT-SON engine shifts

the operator’s preference between ASE and EE while

ensuring higher SINR gains within a particular spatio-

temporal zone.

The rest of the paper organization is as follows: in section

II, we describe the spatial model, user-centric RRH clustering

and the radio propagation model assumed in this work. Section

III focuses on the analytical derivation of the ASE and EE

of the UCRAN. In section IV, we present the proposed

GT-SON model for adaptive cluster size adjustment based

on network parameters and the operators’ revenue model.

Efficiency tradeoff analysis is performed through extensive

simulations in section V. The paper closes with conclusions

and future research directions in Section VI.

II. SYSTEM MODEL

A. Spatial Model

We consider the downlink of a two-tier UCRAN consisting

of one central macro base station (MBS) that has RRHs and

MUs spatially distributed across its foot-prints. We model the

spatial distributions of RRHs and MUs using two independent

stationary Poisson point processes (SPPPs) ΛRRH ∈ R
2 and

ΛMU ∈ R
2 with intensities λRRH and λMU respectively.

Specifically, at an arbitrary time instant, the probability of

finding ni ∈ N, i ∈ {RRH,MU} RRHs / MUs inside a

typical macro-cell with area foot-print A ⊆ R
2 follows the

Poisson law with mean measure λiv2(A). The mean measure

is characterized by the average number of RRHs / MUs per

unit area (i.e., λRRH\λMU ) and the Lebesgue measure [18]

v2(A) =
∫
A
dx on R

2, where if A is a disc of radius r then

v2(A) = πr2 is the area of the disc.

B. Channel Model

We model hxyl(‖x − y‖) as the channel between an

arbitrary MU x ∈ ΛMU and an RRH y ∈ ΛRRH . Here

hxy ∼ ε(1) is a unit mean exponential random variable

that captures the effect of the small-scale fading between

the MU and RRH as Rayleigh-distributed fading channel.

In order to account for the large-scale fading we denote

l(|x−y|) = |x−y|−α where |x−y| is the distance between

x and y and α ≥ 2 is the path loss exponent. It is assumed

that the same transmit power PRRH is used for all RRHs.

C. User-centric RRH Clustering

The RRH clustering mechanism in the user-centric C-RAN

is envisioned on a scenario where a high service priority

MU is served by a RRH that provides the largest signal-to-

noise-plus-interference ratio (SINR) within its cluster. Service

priority to each MU is assigned using a random probability

pMU ∼ U(0, 1) which is incremented after every time slot

during which the service is deferred to the MU because

of presence of one or more higher preference MUs in the

surroundings. For simplicity, we assume that each MU in

our model is requesting service during all time slots (or

TTIs). During each TTI, the GT-SON engine in the centralized

BBU pools determines the optimal cluster radius "RCLR"

for existing network parameters and the operator’s business

specifications (e.g. high data rate or high energy efficiency).

To avoid interference caused by simultaneous transmissions to

nearby MUs, the user-centric RRH clustering creates repulsion

by avoiding spatial overlap between clusters. This implies that

during a particular TTI, a scheduled UE will not have any



other UE with higher service priority within a radial distance

of 2RCLR . The joint RRH clustering and user scheduling

scheme is summarized as algorithm 1. The symbol b(x, r)

denotes a ball of radius r centered at a point x.

Algorithm 1 RRH clustering and MU scheduling algorithm

Inputs: ΛRRH , ΛMU , RCLR

Outputs: Λ′
RRH , Λ′

MU

1: Initialize the set of scheduled MUs and the RRHs serving

within the user-centric clusters at any given time slot as Λ′
MU ,

Λ′
RRH ← ∅.

2: Update Λ′
MU and Λ′

RRH for the current time slot using the

following conditions:

foreach x ∈ ΛMU do

if y ∈ b(x, 2RCLR) and p
{x}
MU > p

{y}
MU , ∀y ∈ ΛMU ,y 6= x

then
Λ′
MU ∪ {x}

foreach r ∈ ΛRRH do

if r ∈ b(x, RCLR) then
if hrxl(||r − x||) > hr′xl(||r

′ − x||), ∀r′ ∈
ΛRRH , r′ ∈ b(x, RCLR), r

′ 6= r then
Λ′
RRH ∪ {r}

end

end

end

else
continue.

end

end

3: Serve all the scheduled users Λ′
MU from the associated

RRHs and update scheduling priorities p
{x}
MU for all x ∈ ΛMU ,

i.e. increment p
{x}
MU if x ∈ Λ′

MU and decrement p
{x}
MU if x /∈

Λ′
MU .

4: Go to step 1.

III. EFFICIENCY METRICS IN USER-CENTRIC C-RAN
A. Area Spectral Efficiency

Consider a scheduled user x ∈ Λ′
MU . Let Scop(x, RCLR) =

Λ′
RRH ∩ b(x, RCLR) be the singleton set containing the RRH

selected to serve x on the basis of the scheduling criteria
(Algorithm 1). Furthermore, let ΛI = Λ′

RRH\Scop(x, RCLR)
be the set of RRHs which are concurrently scheduled to serve
y 6= x, ∀y ∈ Λ′

MU . Let sx and sy be the desired and
interference signals respectively at an arbitrary MU x , then
the received signal at x will be

rx =
√

PRRH max
i∈Scop

hixl(||x− i||)sx+

∑

y∈Λ′

MU
,y 6=x

√

PRRH max
j∈Λ′

RRH
∩(y,RCLR)

hjxl(||x− j||)sy+ϕx,

(1)

where maxi∈Scop
hixl(||x − i||) is the channel

gain between the serving RRH i and the MU x,
maxj∈Λ′

RRH
∩(y,RCLR) hxj l(||x − j||) is the interference

experienced at x due to a RRH j serving another MU
y, PRRH is the transmit power employed by the RRHs
and ϕx is the additive white Gaussian noise (AWGN) at
x’s receiver front end. Without loss of generality, we use
the Silvnyak’s theorem [14] and focus our analysis on the

arbitrary MU x assumed to be located at the origin. Since
ultra dense small cell networks are generally considered to
be interference-limited, we may ignore the AWGN for our
analytical analysis and express the signal-to-interference ratio
(SIR) at MU x as

Γx =
maxi∈Scop hil(ri)
∑

j∈ΛI
hj l(rj)

, (2)

where ri and rj are the relative distances of MU x with its

DL scheduled and interfering RRHs respectively.
The primary hurdle in characterizing the SINR in a UCRAN

arises from the fact that unlike ΛMU , the point process of the
scheduled MUs Λ′

MU is non-stationary. A closer inspection of
Λ′
MU reveals that it is a modified version of Type II Matern

Hard Core process [14]. Therefore, it can be approximated
by an equidense SPPP with appropriate modified intensity
[15][16] given by

λ̄MU =
1− e−4πλ2

MU

4πR2
CLR

. (3)

Once the Λ′
MU distribution is characterized, the next step is

to characterize the aggregate interference experienced by an

arbitrary MU from the activated RRHs outside its user-centric

cluster area.
Proposition 1. The mean of the aggregate interference ex-

perienced by a typical MU under user-centric RRH clustering
can be approximated as follows:

E(I) =
2πλRRH [1− exp(−[1− exp(−4πλMUR

2
CLR)]/4)]

(α− 2)(RCLR)α−2(λRRHπR2
CLR)

, (4)

where α is the terrain dependent pathloss exponent.
Proof: Consider the SPPP ΛRRH , then under the user-

centric RRH clustering algorithm, for each scheduled MU,
only a single RRH which resides in the vicinity as well as
provides maximum channel gain to that MU is activated by the
MBS. A natural implication of this policy is that the resulting
PPP Λ′

RRH is non-stationary. However, like Λ′
MU , it can be

approximated with an equivalent SPPP with modified density
λRRHpACT . Here pACT is the activation probability for the
RRH and can be computed as follows:

pACT
(a)
= Pr{Λ′

MU ∩ b(r, RCLR) 6= ∅|r ∈ Λ′
RRH}.

P r{hrl(rr) > hj l(rj)|j ∈ Λ′
RRH , j 6= r},

=
[

1− Pr{Λ′
MU ∩ b(r, RCLR) = ∅|r ∈ Λ′

RRH}
]

.

P r{hrl(rr) > hj l(rj)|j ∈ Λ′
RRH , j 6= r},

=
[

1− exp(−λ̄MUπR
2
CLR)

]

.(1/[λRRHπR2
CLR]),

=
1− exp (−[1− exp (−4πλMUR

2
CLR)]/4)

λRRHπR2
CLR

,

(5)

where (a) follows from the fact that a RRH is only activated
if: i) there is a scheduled user within a distance of RCLR,
and ii) there is no other RRH within a distance of RCLR

from that user providing better channel gain. Now noticing
that ΛI = Λ′

RRH\Scop(o, RCLR), we can precisely describe
ΛI = Λ′

RRH\b(o, RCLR). Hence the mean interference can
be computed using Campbell’s theorem [14] as follows

E(I) = E(I) = E





∑

j∈Λ′

RRH
\b(o,RCLR)

hj l(rj)



 ,

= 2πλRRHpACT

∫ ∞

RCLR

E(H)r1−αdr.

(6)

Substituting E(H) = 1 in (6) concludes the proof. �



Once the interference is characterized, we can approximate

the link success probability which represents the percentage of

users with adequate link channel quality with the connected

RRHs for DL.
Proposition 2. The link success probability of the probe

MU served under the proposed user-centric clustering and
RRH selection scheme algorithm can be lower-bound as

Psucx ≥ 1−exp

(

−
2πλRRH

αγth
2/α
x E(I)2/α

γ(2/α, γthxE(I)R
α
CLR)

)

,

(7)

where γthx is the MU x’s SIR threshold for reliable DL

transmission and γ(a, b) =
∫ b

0
tα−1 exp(−t)dt is the lower

incomplete Gamma function. Psucx = Pr{Γx > γth} is

x’s successful transmission probability, i.e. probability that

the received SIR at x is higher than γth. The derivation of

coverage probability is in same spirit as [13] and in the interest

of space left for the journal version of the paper.
Considering a constant bitrate system, the system wide

ASE can simply be lower bounded using transmission success
probability as

ASE(RCLR) ≥ λ̄MU log2(1 + γth)Psuc(γth, R
2
CLR). (8)

A thorough investigation of (8) reveals that the effective

number of scheduled users will increase as cluster size shrinks.

On the other hand, increasing the cluster size decreases co-tier

interference and thus enhances Γx. This discussion implies

that there exists an optimal cluster radius that maximizes

system wide ASE.

B. Energy Efficiency

The power consumption of a stand-alone small cell was
investigated in the award winning project EARTH [17]. The
model was extended by parameterization for C-RAN [18].
Taking inspiration from [19] and [18], the power consumption
per unit area can be written in simplified form as

PCRAN = λRRHpACT (MθP0 +∆uPu) , (9)

where M is the mean RRH activation per cluster, P0 is

the fixed power consumption of an active RRH, ∆u is the

coefficient that lumps together frequency dependent response

of a power amplifier and several other factors, and Pu denotes

the load (active MU density) dependent RRH transmit power.

0 ≤ θ ≤ 1 parameterizes the UCRAN implementation

efficiency with θ = 1 indicating least energy efficienct deploy-

ment. The mathematical expression for determining average

number of RRHs in each cluster (M ) is given in Lemma 1.

Lemma I: The average number of activated RRHs within an

arbitrary user-centric cluster, i.e. M , is the complement of the

void probability of the RRHs, i.e. M = 1− e−λRRHπR2

CLR .
Proof: Consider that ΛRRH is a SPPP with intensity

λRRH , then under user-centric scheme, the average number
of RRHs within a circular area of radius RCLR is given by
λRRHπR2

CLR. Since each user-centric cluster can have at most
one activated RRH, the average number of activated RRHs
is the complement of the probability that an arbitrary cluster
would at least one RRH within its foot-prints, i.e.

M = Pr{ΛRRH ∩ b(x, RCLR) 6= ∅|x ∈ Λ′
MU},

= 1− Pr{ΛRRH ∩ b(x, RCLR) = ∅|x ∈ Λ′
MU},

= 1− exp{−πλRRHR2
CLR}. �

Considering unity bandwidth, the system energy efficiency

’EE(RCLR)’ (bits/s/Joule) for a UCRAN system can be ex-

pressed as the ratio of sustainable system throughput (8) and

the total power consumed by the activated RRHs (9).

IV. GT-SON FRAMEWORK FOR RRH CLUSTER SIZE

OPTIMIZATION

The GT based SON engine is embedded within the central-

ized BBU pool for real-time adjustment of RCLR to optimize

a system level efficiency parameter of interest with respect to

terrain environment, user demographics, RRH deployment sce-

nario and network operator’s spatio-temporal revenue model

(see fig.2). The variation in the cluster size models the dynamic

tradeoff between ASE and EE in our bargaining game model.

The proposed GT-SON framework with the sequence of steps

in dynamic cluster size adjustment for modeling the ASE-EE

tradeoff is given in fig. 2.

To analytically express the ASE-EE tradeoff, we formulate

a two-player cooperative bargaining game where both ASE

and EE are modelled as virtual game players that indepen-

dently estimate the best cluster size for maximizing their

respective utility functions. We will see later that due to a

large dissimilarity in cluster size preferences of the players,

each player’s payoff is affected by the cluster size selection

made by the other player. However, both players can mutually

benefit through the cooperative game where they negotiate

for the RCLR that achieves optimal ASE-EE tradeoff. Using

Nash’s axiomatic model, it is well known that the Nash

bargaining solution (NBS) achieves a pareto-optimal solution,

i.e. the optimal tradeoff in the utilities of the players in such

cooperative games [20]. If the players can be denoted by the

Fig. 2. GT-SON Framework in UCRAN

set N = {1, 2}, where player i = 1 denotes ASE, player i = 2
denotes EE and Si denotes the set of all feasible payoffs to

an arbitrary MU i as

Si = {Ui|Ui = Ui(RCLR), RCLR ∈ R : RCLR > 0}. (10)

Let us define the space S as the set of all feasible payoffs that

players i ∈ N can achieve when they collaborate, i.e.

S = {U = (u1, u2)|u1 ∈ S1, u2 ∈ S2} (11)

where u1(x1) is the utility of the first player and u2(x2) is the utility
of the second player such that

s1 = u1(x1) = [ASE(RCLR)]
β , (12)

s2 = u2(x2) = [EE(RCLR)]
1−β

(13)



and x1 = x2 = RCLR ∈ R : RCLR > 0. β ∈ [0, 1] is the

exponential bias factor in NBS that defines the bargaining

power (or the tradeoff) division between the two players. We

also define the disagreement space D ∈ S as the set of the

two disagreement points d = (d1, d2) where d1 = u1(D) and

d2 = u2(D) represent the payoffs for the two players if the

bargaining process fails and no outcome is reached. For our

game, we set d = (0, 0) thus giving both players uniform

leeway to improve their utilities. [21] shows that the NBS in

such parametric cooperative games exists only if the utility

functions for the players form convex and compact sets.

Proposition 3. The utility and disagreement spaces in the

proposed GT-SON framework constitute a two-player bargain-

ing problem defined by (S, d) where S ∈ R
2, d ∈ S and the

resulting unique bargaining outcome is pareto-optimal.

Proof: A bargaining problem can be defined as the pair

(S, d) if: i) S is a convex and compact set, ii) There exists

some s ∈ S such that s > d, i.e. s1 > d1 and s2 > d2.

It is quite obvious that S is compact and since d = (0, 0),
positive utilities for our players satisfies the 2nd condition.

This leaves behind the question whether S is convex which

holds true if: ∀ǫ : 0 ≤ ǫ ≤ 1, if Ua = (ua
1 , u

a
2) ∈ S1 and

U b = (ub
1, u

b
2) ∈ S2, then ǫUa + (1 − ǫ)U b ∈ S . From (8),

we see that ǫua
1 + (1− ǫ)ub

1 = [λ̄MU log2(1 + γth)P̄ ]β where

P̄ = [ǫ(Pa
suc)

β + (1 − ǫ)(Pb
suc)

β ] and since we know that

0 ≤ P
a
suc, Pb

suc, β ≤ 1, the sum in (14) forms a convex set,

i.e.

ǫua
1 + (1− ǫ)ub

1 ∈ S1. (14)

Similarly, from (9), we see that ǫua
2 + (1 − ǫ)ub

2 =

[ λ̄MU log
2
(1+γth)P̄

λRRH ¯pACT (MθP0+∆uPu)
](1−β), where the numerator is con-

vex from (14) and denominator is convex since ¯pACT =
ǫ(paACT )

1−β+(1−ǫ)(pbACT )
1−β and 0 ≤ paACT , pbACT , β ≤ 1.

Therefore,

ǫua
2 + (1− ǫ)ub

2 ∈ S2. (15)

From (14) and (15), we conclude that ǫUa + (1 − ǫ)U b ∈ S
which satisfies the conditions for convexity for set S . Accord-
ing to Nash’s axiomatic approach [20], there exists a unique
solution for the two-player bargaining problem which is the
pair of utilities (s∗1, s

∗
2) that solves the following optimization

problem:

max
(s1,s2)

(s1 − d1)(s2 − d2), (s1, s2) ∈ S ≥ (d1, d2). (16)

�
Proposition 3 implies that for an arbitrary MU x, the optimal

cluster size "Ropt
CLR,x" is obtained through the solution of a

convex optimization problem (also known as Nash Product

(NP)) which for our model can be given by

Ropt
CLR,x = max

RCLR,x

[ASE(RCLR,x)]
β [EE(RCLR,x)]

1−β . (17)

Notice that the computational complexity of the GT-SON en-

gine is a function of the cluster size granularity, i.e. O(NCLR)
where NCLR denotes the number of distinct cluster sizes over

which the optimization in (17) is performed. As the processing

times are independent of MU or RRH densities, real-time

implementation of the GT-SON optimization framework is

practically realizable and scalable throughout the network.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we discuss the analytical trends and Monte

Carlo simulation results for an LTE-like dense network de-

ployment scenario. For simulation, we consider a two tier

HetNet with a tri-sector hexagonal MBS of radius 500 m.

We consider a single sector of the MBS covering an area of

73850 m2 where MUs and small cell RRHs are uniformly

distributed according to their independent SPPPs. Without loss

of generality, the channel power gains between all MUs and

RRHs are assumed unity. We assume uniform transmit power

of 30 dBm for all RRHs. Other power consumption parameters

are taken from [21]. Simulation results are averaged over 1000

Monte Carlo trials.

A. Impact of β on ASE, EE in a UCRAN
From the analytical results in (8), (9) and (17), we investi-

gate the variation in the optimal cluster size and the efficiency

metrics as β is shifted between ASE-optimal (β = 1) and EE-

optimal (β = 0) points. The GT-SON engine optimizes RCLR

on the following fixed network parameters: λMU = 10−2/m2,

θ = 0.5, γth = 4 dB, and 0 < RCLR ≤ 100 m. The

ASE results in fig. 3a indicate around the same ASE-optimal

cluster size of 5m for variations in pathloss exponent and RRH

deployment densities. It is seen that higher RRH densities

yield superior system throughput which is understandable

considering pACT is expected to increase with λRRH . It is

also noted that α = 4 yields more than two-fold increase

in ASE as compared to α = 3. Since mmWave network

propagation studies [22] have indicated higher pathloss due to

blocking effects, the UCRAN is expected to yield more system

capacity at mmWave spectrum by virtue of relatively larger

MU-interfering RRH distances. EE results in fig. 3b indicate

optimal RCLR to be the highest possible cluster size because

of the combined effect of inreased throughput and reduced

power consumption with increase in RCLR. Like ASE, the

maximum EE is achieved at higher RRH density and pathloss

exponents. This implies that the GT-SON engine will most

effectively utilize the ASE-EE tradeoff with gain variations of

over 100% through appropriate β adjustment in ultra-dense

mmWave networks.

B. User QoE Analysis in a UCRAN
Users’ QoE analysis is conducted through SINR distribution

between MUs in an LTE like simulation tool with network

parameters: λMU = 10−2/m2, λRRH = 10−3/m2, α=4,

θ = 0.5, γth = 4 dB and bandwidth B=1 Hz. Both the

MU and RRH deployments are performed using uniform PPPs

and average performance results are obtained via Monte Carlo

simulations. We use two variants of the proposed user-centric

approach: i) RRH cluster size deployment that maximizes

ASE henceforth referred as UC(ASE), and ii) cluster size

deployment that maximizes EE henceforth referred as UC(EE).

To compare the performance with a standard non user-centric

PPP deployment, we follow the approach in [23] and represent

it as NUC. Results in fig.4 show that even with the most data

throughput efficient user-centric design, we obtain a SINR gain

of over 20 dB for almost 50% of the users. The ruggedness in

the cdf graph of UC(EE) in comparison to the other two CDFs
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is because of lower number of users in the thinned PPP λ̄MU

which is a direct consequence of the larger cluster sizes in

EE optimization. The 5 percentile SINR performance (for the

cell-edge users with worst SINR in conventional networks) is

also significantly improved for user-centric approaches with

about 20 dB and 40 dB gain with UC(ASE) and UC(EE)

respectively. Clearly the user-centric approach eliminates cell-

edge degradation and guaranteed high QoE for every user

regardless of its physical location.

C. ASE, EE v/s λRRH in a UCRAN

Fig. 5 compares the system wide ASE and EE of the user-

centric approaches with the baseline scheme at different RRH

densities and λMU = 10−2/m2, α=4, θ = 0.5 and γth = 4
dB. Fig. 5a reveals that as the RRH deployment density

increases, UC(ASE) emerges as the most data efficient scheme.

While NUC exhibits uniform ASE, UC(ASE) by virtue of

increased Psuc exhibits highest system capacity. On the other

hand, UC(EE), though not throughput efficient by any regards,

yields more than 5 times power efficient network as compared

to NUC approach (fig. 5b). This observation highlights the

inherent ASE-EE tradeoff available to the network operator

by adjusting β via the GT-SON and choosing the appropriate

RRH cluster size.

VI. CONCLUSION

In this paper, we proposed a user-centric Cloud RAN

orchestration framework capable of offering higher system

capacity, better energy efficiency and improved received signal

quality in dense deployment scenarios, compared to non user-

centric conventional Cloud RAN architectures. We derived

expressions for the area spectral and energy efficiency pa-

rameters as a function of system wide RRH cluster size

in the user-centric network. Analytical results revealed that

while ASE is optimized at low cluster sizes, EE becomes

optimal at a large cluster size as large cluster sizes ensure

lower interference and reduced power consumption through

smaller number of activated RRH. Consequentially, the ASE-

EE tradeoff manifests itself in terms of dimensioning of the

cluster radius in UCRAN. We then propose a game theoretic

framework to achieve Pareto optimal solution and show that

a SON engine within the centralized BBU pools can be used

to dynamically configure the optimal cluster size. Simulation

results indicate that: i) the SON mechanism allows more

than 100% efficiency variation particularly at dense RRH

deployments and high pathloss exponents, and ii) significant

SINR gains can be realized in both ASE and EE operating

modes by virtue of interference-free RRH cluster zones around

each scheduled user. Future directions include investigations

of methods to group multiple users into clusters based on their

spatial proximity and service class.
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