73,171 research outputs found

    Time-aware Egocentric network-based User Profiling

    Get PDF
    International audienceImproving the egocentric network-based user's profile building process by taking into account the dynamic characteristics of social networks can be relevant in many applications. To achieve this aim, we propose to apply a time-aware method into an existing egocentric-based user profiling process, based on previous contributions of our team. The aim of this strategy is to weight user's interests according to their relevance and freshness. The time awareness weight of an interest is computed by combining the relevance of individuals in the user's egocentric network (computed by taking into account the freshness of their ties) with the information relevance (computed by taking into account its freshness). The experiments on scientific publications networks (DBLP/Mendeley) allow us to demonstrate the effectiveness of our proposition compared to the existing time-agnostic egocentric network-based user profiling process

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University

    Hybrid Profiling in Information Retrieval

    Get PDF
    Abstract-One of the main challenges in search engine quality of service is how to satisfy the needs and the interests of individual users. This raises the fundamental issue of how to identify and select the information that is relevant to a specific user. This concern over generic provision and the lack of search precision have provided the impetus for the research into Web Search personalisation. In this paper a hybrid user profiling system is proposed -a combination of explicit and implicit user profiles for improving the web search effectiveness in terms of precision and recall. The proposed system is content-based and implements the Vector Space Model. Experimental results, supported by significance tests, indicate that the system offers better precision and recall in comparison to traditional search engines

    Semantic user profiling techniques for personalised multimedia recommendation

    Get PDF
    Due to the explosion of news materials available through broadcast and other channels, there is an increasing need for personalised news video retrieval. In this work, we introduce a semantic-based user modelling technique to capture users’ evolving information needs. Our approach exploits implicit user interaction to capture long-term user interests in a profile. The organised interests are used to retrieve and recommend news stories to the users. In this paper, we exploit the Linked Open Data Cloud to identify similar news stories that match the users’ interest. We evaluate various recommendation parameters by introducing a simulation-based evaluation scheme

    Alter ego, state of the art on user profiling: an overview of the most relevant organisational and behavioural aspects regarding User Profiling.

    Get PDF
    This report gives an overview of the most relevant organisational and\ud behavioural aspects regarding user profiling. It discusses not only the\ud most important aims of user profiling from both an organisation’s as\ud well as a user’s perspective, it will also discuss organisational motives\ud and barriers for user profiling and the most important conditions for\ud the success of user profiling. Finally recommendations are made and\ud suggestions for further research are given

    An architecture for life-long user modelling

    Get PDF
    In this paper, we propose a united architecture for the creation of life-long user profiles. Our architecture combines different steps required for a user prole, including feature extraction and representation, reasoning, recommendation and presentation. We discuss various issues that arise in the context of life-long profiling

    Bond University Doctor of Physiotherapy Mini Congress: Book of Abstracts 2019

    Get PDF

    On the Road to Accurate Biomarkers for Cardiometabolic Diseases by Integrating Precision and Gender Medicine Approaches

    Get PDF
    The need to facilitate the complex management of cardiometabolic diseases (CMD) has led to the detection of many biomarkers, however, there are no clear explanations of their role in the prevention, diagnosis or prognosis of these diseases. Molecules associated with disease pathways represent valid disease surrogates and well-fitted CMD biomarkers. To address this challenge, data from multi-omics types (genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and nutrigenomics), from human and animal models, have become available. However, individual omics types only provide data on a small part of molecules involved in the complex CMD mechanisms, whereas, here, we propose that their integration leads to multidimensional data. Such data provide a better understanding of molecules related to CMD mechanisms and, consequently, increase the possibility of identifying well-fitted biomarkers. In addition, the application of gender medicine also helps to identify accurate biomarkers according to gender, facilitating a differential CMD management. Accordingly, the impact of gender differences in CMD pathophysiology has been widely demonstrated, where gender is referred to the complex interrelation and integration of sex (as a biological and functional marker of the human body) and psychological and cultural behavior (due to ethnical, social, and religious background). In this review, all these aspects are described and discussed, as well as potential limitations and future directions in this incipient field

    Broad expertise retrieval in sparse data environments

    Get PDF
    Expertise retrieval has been largely unexplored on data other than the W3C collection. At the same time, many intranets of universities and other knowledge-intensive organisations offer examples of relatively small but clean multilingual expertise data, covering broad ranges of expertise areas. We first present two main expertise retrieval tasks, along with a set of baseline approaches based on generative language modeling, aimed at finding expertise relations between topics and people. For our experimental evaluation, we introduce (and release) a new test set based on a crawl of a university site. Using this test set, we conduct two series of experiments. The first is aimed at determining the effectiveness of baseline expertise retrieval methods applied to the new test set. The second is aimed at assessing refined models that exploit characteristic features of the new test set, such as the organizational structure of the university, and the hierarchical structure of the topics in the test set. Expertise retrieval models are shown to be robust with respect to environments smaller than the W3C collection, and current techniques appear to be generalizable to other settings

    Clinical proteomics for precision medicine: the bladder cancer case

    Get PDF
    Precision medicine can improve patient management by guiding therapeutic decision based on molecular characteristics. The concept has been extensively addressed through the application of –omics based approaches. Proteomics attract high interest, as proteins reflect a “real-time” dynamic molecular phenotype. Focusing on proteomics applications for personalized medicine, a literature search was conducted to cover: a) disease prevention, b) monitoring/ prediction of treatment response, c) stratification to guide intervention and d) identification of drug targets. The review indicates the potential of proteomics for personalized medicine by also highlighting multiple challenges to be addressed prior to actual implementation. In oncology, particularly bladder cancer, application of precision medicine appears especially promising. The high heterogeneity and recurrence rates together with the limited treatment options, suggests that earlier and more efficient intervention, continuous monitoring and the development of alternative therapies could be accomplished by applying proteomics-guided personalized approaches. This notion is backed by studies presenting biomarkers that are of value in patient stratification and prognosis, and by recent studies demonstrating the identification of promising therapeutic targets. Herein, we aim to present an approach whereby combining the knowledge on biomarkers and therapeutic targets in bladder cancer could serve as basis towards proteomics- guided personalized patient management
    corecore