1,980 research outputs found

    A Comprehensive Insight into Game Theory in relevance to Cyber Security

    Get PDF
    The progressively ubiquitous connectivity in the present information systems pose newer challenges tosecurity. The conventional security mechanisms have come a long way in securing the well-definedobjectives of confidentiality, integrity, authenticity and availability. Nevertheless, with the growth in thesystem complexities and attack sophistication, providing security via traditional means can beunaffordable. A novel theoretical perspective and an innovative approach are thus required forunderstanding security from decision-making and strategic viewpoint. One of the analytical tools whichmay assist the researchers in designing security protocols for computer networks is game theory. Thegame-theoretic concept finds extensive applications in security at different levels, including thecyberspace and is generally categorized under security games. It can be utilized as a robust mathematicaltool for modelling and analyzing contemporary security issues. Game theory offers a natural frameworkfor capturing the defensive as well as adversarial interactions between the defenders and the attackers.Furthermore, defenders can attain a deep understanding of the potential attack threats and the strategiesof attackers by equilibrium evaluation of the security games. In this paper, the concept of game theoryhas been presented, followed by game-theoretic applications in cybersecurity including cryptography.Different types of games, particularly those focused on securing the cyberspace, have been analysed andvaried game-theoretic methodologies including mechanism design theories have been outlined foroffering a modern foundation of the science of cybersecurity

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patientsā€™ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page

    Dynamic Geospatial Spectrum Modelling: Taxonomy, Options and Consequences

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on opportunistic access in the temporal domain. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed large sections of the overall DSA problem space. In this paper, we argue that the spatio-temporal operating context of specific environments matters to the selection of the appropriate technology for learning context information. We identify twelve potential operating environments and compare four context awareness approaches (on-board sensing, databases, sensor networks, and cooperative sharing) for these environments. Since our point of view is overall system cost and efficiency, this analysis has utility for those regulators whose objectives are reducing system costs and enhancing system efficiency. We conclude that regulators should pay attention to the operating environment of DSA systems when determining which approaches to context learning to encourage
    • ā€¦
    corecore