1,236 research outputs found

    Offloading Content with Self-organizing Mobile Fogs

    Get PDF
    Mobile users in an urban environment access content on the internet from different locations. It is challenging for the current service providers to cope with the increasing content demand from a large number of collocated mobile users. In-network caching to offload content at nodes closer to users alleviate the issue, though efficient cache management is required to find out who should cache what, when and where in an urban environment, given nodes limited computing, communication and caching resources. To address this, we first define a novel relation between content popularity and availability in the network and investigate a node's eligibility to cache content based on its urban reachability. We then allow nodes to self-organize into mobile fogs to increase the distributed cache and maximize content availability in a cost-effective manner. However, to cater rational nodes, we propose a coalition game for the nodes to offer a maximum "virtual cache" assuming a monetary reward is paid to them by the service/content provider. Nodes are allowed to merge into different spatio-temporal coalitions in order to increase the distributed cache size at the network edge. Results obtained through simulations using realistic urban mobility trace validate the performance of our caching system showing a ratio of 60-85% of cache hits compared to the 30-40% obtained by the existing schemes and 10% in case of no coalition

    Profit Maximization for Cache-Enabled Vehicular Mobile Edge Computing Networks

    Get PDF
    In this paper, we investigate a multiuser cache-enabled vehicular mobile edge computing (MEC) network, where one edge server (ES) has some caching and computing capabilities to assist the task computing from the vehicular users. The introduce of caching into the MEC network significantly affects the system performance such as the latency, energy consumption and profit at the ES, which imposes a critical challenge on the system design and optimization. To solve this challenge, we firstly design the vehicular MEC network in a non-competitive environment by maximizing the profit of the ES with a predetermined threshold of user QoE, and jointly exploit the caching and computing resources in the network. We then model the optimization problem into a binary integer programming problem, and adopt the cross entropy (CE) method to obtain the effective offloading and caching decision with a low complexity. Simulation results are finally presented to verify that the proposed scheme can achieve the near optimal performance of the conventional branch and bound (BnB) scheme, while sharply reduce the computational complexity compared to the BnB
    • …
    corecore