825 research outputs found

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    Minimal geodesics along volume preserving maps, through semi-discrete optimal transport

    Get PDF
    We introduce a numerical method for extracting minimal geodesics along the group of volume preserving maps, equipped with the L2 metric, which as observed by Arnold solve Euler's equations of inviscid incompressible fluids. The method relies on the generalized polar decomposition of Brenier, numerically implemented through semi-discrete optimal transport. It is robust enough to extract non-classical, multi-valued solutions of Euler's equations, for which the flow dimension is higher than the domain dimension, a striking and unavoidable consequence of this model. Our convergence results encompass this generalized model, and our numerical experiments illustrate it for the first time in two space dimensions.Comment: 21 pages, 9 figure

    Relaxation to magnetohydrodynamics equilibria via collision brackets

    Full text link
    Metriplectic dynamics is applied to compute equilibria of fluid dynamical systems. The result is a relaxation method in which Hamiltonian dynamics (symplectic structure) is combined with dissipative mechanisms (metric structure) that relaxes the system to the desired equilibrium point. The specific metric operator, which is considered in this work, is formally analogous to the Landau collision operator. These ideas are illustrated by means of case studies. The considered physical models are the Euler equations in vorticity form, the Grad-Shafranov equation, and force-free MHD equilibria.Comment: Conference Proceeding (Theory of Fusions Plasmas, 2018), 9 pages, 8 figure

    Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces

    Get PDF
    Let (M,g)(M,g) be a connected, closed, orientable Riemannian surface and denote by λk(M,g)\lambda_k(M,g) the kk-th eigenvalue of the Laplace-Beltrami operator on (M,g)(M,g). In this paper, we consider the mapping (M,g)↦λk(M,g)(M, g)\mapsto \lambda_k(M,g). We propose a computational method for finding the conformal spectrum Λkc(M,[g0])\Lambda^c_k(M,[g_0]), which is defined by the eigenvalue optimization problem of maximizing λk(M,g)\lambda_k(M,g) for kk fixed as gg varies within a conformal class [g0][g_0] of fixed volume textrmvol(M,g)=1textrm{vol}(M,g) = 1. We also propose a computational method for the problem where MM is additionally allowed to vary over surfaces with fixed genus, γ\gamma. This is known as the topological spectrum for genus γ\gamma and denoted by Λkt(γ)\Lambda^t_k(\gamma). Our computations support a conjecture of N. Nadirashvili (2002) that Λkt(0)=8πk\Lambda^t_k(0) = 8 \pi k, attained by a sequence of surfaces degenerating to a union of kk identical round spheres. Furthermore, based on our computations, we conjecture that Λkt(1)=8π23+8π(k−1)\Lambda^t_k(1) = \frac{8\pi^2}{\sqrt{3}} + 8\pi (k-1), attained by a sequence of surfaces degenerating into a union of an equilateral flat torus and k−1k-1 identical round spheres. The values are compared to several surfaces where the Laplace-Beltrami eigenvalues are well-known, including spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume one, the kk-th Laplace-Beltrami eigenvalue has a local maximum with value λk=4π2⌈k2⌉2(⌈k2⌉2−14)−12\lambda_k = 4\pi^2 \left\lceil \frac{k}{2} \right\rceil^2 \left( \left\lceil \frac{k}{2} \right\rceil^2 - \frac{1}{4}\right)^{-\frac{1}{2}}. Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.Comment: 43 pages, 18 figure

    A zero-mode mechanism for spontaneous symmetry breaking in a turbulent von K\'arm\'an flow

    Get PDF
    We suggest that the dynamical spontaneous symmetry breaking reported in a turbulent swirling flow at Re=40 000Re=40~000 by Cortet et al., Phys. Rev. Lett., 105, 214501 (2010) can be described through a continuous one parameter family transformation (amounting to a phase shift) of steady states and could be the analogue of the Goldstone mode of the vertical translational symmetry in an ideal system. We investigate a possible mechanism of emergence of such spontaneous symmetry breaking in a toy model of our out-equilibrium system, derived from its equilibrium counterpart. We show that the stationary states are solution of a linear differential equation. For a specific value of the Reynolds number, they are subject to a spontaneous symmetry breaking through a zero-mode mechanism. These zero-modes obey a Beltrami property and their spontaneous fluctuations can be seen as the "phonon of turbulence".Comment: 17 pages, 4 figures, submitted to New. J. Phy

    Point cloud discretization of Fokker-Planck operators for committor functions

    Full text link
    The committor functions provide useful information to the understanding of transitions of a stochastic system between disjoint regions in phase space. In this work, we develop a point cloud discretization for Fokker-Planck operators to numerically calculate the committor function, with the assumption that the transition occurs on an intrinsically low-dimensional manifold in the ambient potentially high dimensional configurational space of the stochastic system. Numerical examples on model systems validate the effectiveness of the proposed method.Comment: 17 pages, 11 figure

    Equilibrium configurations of nematic liquid crystals on a torus

    Full text link
    The topology and the geometry of a surface play a fundamental role in determining the equilibrium configurations of thin films of liquid crystals. We propose here a theoretical analysis of a recently introduced surface Frank energy, in the case of two-dimensional nematic liquid crystals coating a toroidal particle. Our aim is to show how a different modeling of the effect of extrinsic curvature acts as a selection principle among equilibria of the classical energy, and how new configurations emerge. In particular, our analysis predicts the existence of new stable equilibria with complex windings.Comment: 9 pages, 6 figures. This version is to appear on Phys. Rev.

    On the bending algorithms for soft objects in flows

    No full text
    International audienceOne of the most challenging aspects in the accurate simulation of three-dimensional soft objects such as vesicles or biological cells is the computation of membrane bending forces. The origin of this difficulty stems from the need to numerically evaluate a fourth order derivative on the discretized surface geometry. Here we investigate six different algorithms to compute membrane bending forces, including regularly used methods as well as novel ones. All are based on the same physical model (due to Canham and Helfrich) and start from a surface discretization with flat triangles. At the same time, they differ substantially in their numerical approach. We start by comparing the numerically obtained mean curvature, the Laplace-Beltrami operator of the mean curvature and finally the surface force density to analytical results for the discocyte resting shape of a red blood cell. We find that none of the considered algorithms converges to zero error at all nodes and that for some algorithms the error even diverges. There is furthermore a pronounced influence of the mesh structure: Discretizations with more irregular triangles and node connectivity present serious difficulties for most investigated methods. To assess the behavior of the algorithms in a realistic physical application, we investigate the deformation of an initially spherical capsule in a linear shear flow at small Reynolds numbers. To exclude any influence of the flow solver, two conceptually very different solvers are employed: the Lattice-Boltzmann and the Boundary Integral Method. Despite the largely different quality of the bending algorithms when applied to the static red blood cell, we find that in the actual flow situation most algorithms give consistent results for both hydrodynamic solvers. Even so, a short review of earlier works reveals a wide scattering of reported results for, e.g., the Taylor deformation parameter. Besides the presented application to biofluidic systems, the investigated algorithms are also of high relevance to the computer graphics and numerical mathematics communities
    • …
    corecore