80 research outputs found

    On the dimension of posets with cover graphs of treewidth 22

    Get PDF
    In 1977, Trotter and Moore proved that a poset has dimension at most 33 whenever its cover graph is a forest, or equivalently, has treewidth at most 11. On the other hand, a well-known construction of Kelly shows that there are posets of arbitrarily large dimension whose cover graphs have treewidth 33. In this paper we focus on the boundary case of treewidth 22. It was recently shown that the dimension is bounded if the cover graph is outerplanar (Felsner, Trotter, and Wiechert) or if it has pathwidth 22 (Bir\'o, Keller, and Young). This can be interpreted as evidence that the dimension should be bounded more generally when the cover graph has treewidth 22. We show that it is indeed the case: Every such poset has dimension at most 12761276.Comment: v4: minor changes made following helpful comments by the referee

    Nowhere Dense Graph Classes and Dimension

    Full text link
    Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for every h1h \geq 1 and every ϵ>0\epsilon > 0, posets of height at most hh with nn elements and whose cover graphs are in the class have dimension O(nϵ)\mathcal{O}(n^{\epsilon}).Comment: v4: Minor changes suggested by a refere

    Planar posets have dimension at most linear in their height

    Full text link
    We prove that every planar poset PP of height hh has dimension at most 192h+96192h + 96. This improves on previous exponential bounds and is best possible up to a constant factor. We complement this result with a construction of planar posets of height hh and dimension at least (4/3)h2(4/3)h-2.Comment: v2: Minor change

    Cliquewidth and dimension

    Full text link
    We prove that every poset with bounded cliquewidth and with sufficiently large dimension contains the standard example of dimension kk as a subposet. This applies in particular to posets whose cover graphs have bounded treewidth, as the cliquewidth of a poset is bounded in terms of the treewidth of the cover graph. For the latter posets, we prove a stronger statement: every such poset with sufficiently large dimension contains the Kelly example of dimension kk as a subposet. Using this result, we obtain a full characterization of the minor-closed graph classes C\mathcal{C} such that posets with cover graphs in C\mathcal{C} have bounded dimension: they are exactly the classes excluding the cover graph of some Kelly example. Finally, we consider a variant of poset dimension called Boolean dimension, and we prove that posets with bounded cliquewidth have bounded Boolean dimension. The proofs rely on Colcombet's deterministic version of Simon's factorization theorem, which is a fundamental tool in formal language and automata theory, and which we believe deserves a wider recognition in structural and algorithmic graph theory

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    Topological minors of cover graphs and dimension

    Full text link
    We show that posets of bounded height whose cover graphs exclude a fixed graph as a topological minor have bounded dimension. This result was already proven by Walczak. However, our argument is entirely combinatorial and does not rely on structural decomposition theorems. Given a poset with large dimension but bounded height, we directly find a large clique subdivision in its cover graph. Therefore, our proof is accessible to readers not familiar with topological graph theory, and it allows us to provide explicit upper bounds on the dimension. With the introduced tools we show a second result that is supporting a conjectured generalization of the previous result. We prove that (k+k)(k+k)-free posets whose cover graphs exclude a fixed graph as a topological minor contain only standard examples of size bounded in terms of kk.Comment: revised versio
    corecore