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Abstract In 1977, Trotter and Moore proved that a poset has dimension at most 3 whenever
its cover graph is a forest, or equivalently, has treewidth at most 1. On the other hand, a well-
known construction of Kelly shows that there are posets of arbitrarily large dimension whose
cover graphs have treewidth 3. In this paper we focus on the boundary case of treewidth
2. It was recently shown that the dimension is bounded if the cover graph is outerplanar
(Felsner, Trotter, and Wiechert) or if it has pathwidth 2 (Biró, Keller, and Young). This
can be interpreted as evidence that the dimension should be bounded more generally when
the cover graph has treewidth 2. We show that it is indeed the case: Every such poset has
dimension at most 1276.
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1 Introduction

The purpose of this paper is to show the following:

Theorem 1 Every poset whose cover graph has treewidth at most 2 has dimension at most
1276.

Let us provide some context for our theorem. Already in 1977, Trotter and Moore [11]
showed that if the cover graph of a poset P is a forest then dim(P ) � 3 and this is best
possible, where dim(P ) denotes the dimension of P . Recalling that forests are exactly the
graphs of treewidth at most 1, it is natural to ask how big can the dimension be for larger
treewidths. Motivated by this question, we proceed with a brief survey of relevant results
about the dimension of posets and properties of their cover graphs.

One such result, due to Felsner, Trotter and Wiechert [3], states that if the cover graph
of a poset P is outerplanar then dim(P ) � 4. Again, the bound is best possible. Note that
outerplanar graphs have treewidth at most 2. Note also that one cannot hope for a similar
bound on the dimension of posets with a planar cover graph. Indeed, already in 1981 Kelly
[6] presented a family of posets {Qn}n�2 with planar cover graphs and dim(Qn) = n (see
Fig. 1). One interesting feature of Kelly’s construction for our purposes is that the cover
graphs also have treewidth at most 3 (with equality for n � 5), as is easily verified. In fact,
they even have pathwidth at most 3 (with equality for n � 4).

Fig. 1 Kelly’s construction of a poset Qn with a planar cover graph containing the standard example Sn as
a subposet, for n = 6. (Let us recall that the standard example Sn is the poset on 2n elements consisting of n

minimal elements a1, . . . , an and n maximal elements b1, . . . , bn which is such that ai < bj in Sn if and only
if i �= j .) The subposet induced by the ai ’s and bi ’s form S6, which has dimension 6. The general definition
of Qn for any n � 2 is easily inferred from the figure. Since the standard example Sn has dimension n, this
shows that posets with planar cover graphs have unbounded dimension
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Very recently, Biró, Keller and Young [1] showed that if the cover graph of a poset P

has pathwidth at most 2, then its dimension is bounded: it is at most 17. Furthermore, they
proved that the treewidth of the cover graph of any poset containing the standard example
Sn with n � 5 is at least 3, thus showing in particular that Kelly’s construction cannot be
modified to have treewidth 2.

To summarize, while the dimension of posets with cover graphs of treewidth 3 is
unbounded, no such property is known to hold for the case of treewidth 2, and we cannot
hope to obtain it by constructing posets containing large standard examples. Moreover, as
mentioned above, the dimension is bounded for two important classes of graphs of treewidth
at most 2, outerplanar graphs and graphs of pathwidth at most 2. All this can be interpreted
as strong evidence that the dimension should be bounded more generally when the cover
graph has treewidth at most 2, which is exactly what we prove in this paper.

We note that the bound on the dimension we obtain is large (1276), and is most likely far
from the truth. Furthermore, while we strove to make our arguments as simple as possible—
and as a result did not try to optimize the bound—the proofs are lengthy and technical. We
believe that there is still room for improvements, and it could very well be that a different
approach would give a better bound and/or more insight into these problems.

We conclude this introduction by briefly mentioning a related line of research. Recently,
new bounds for the dimension were found for certain posets of bounded height. Streib and
Trotter [8] proved that for every positive integer h, there is a constant c such that if a poset
P has height at most h and its cover graph is planar, then dim(P ) � c. Joret, Micek, Milans,
Trotter, Walczak, and Wang [4] showed that for every positive integers h and t , there is a
constant c so that if P has height at most h and the treewidth of its cover graph is at most t ,
then dim(P ) � c.

These two results are closely related. In particular, one can deduce the result for planar
cover graphs from the result for bounded treewidth cover graphs using a ‘trick’ introduced
in [8] that reduces the problem to the special case where there is a special minimal element
a0 in the poset that is smaller than all the maximal elements. This implies that the diameter
of the cover graph is bounded from above by a function of the height of the poset, and it
is well-known that planar graphs with bounded diameter have bounded treewidth (see for
instance [2]). This trick of having a special minimal element a0 below all maximal elements
turned out to be very useful in the context of this paper as well (though for different reasons),
see Observation 6 in Section 2.

Finally, we mention that several new results on bounding the dimension of certain posets
in terms of their height have recently been obtained [5, 7, 12], the interested reader is
referred to [5] for a detailed overview of that area.

The paper is organized as follows. In Section 2 we give the necessary definitions and
present a number of reductions, culminating in a more technical version of our theorem,
Theorem 7. Then, in Section 3, we prove the result.

2 Definitions and Preliminaries

Let P = (X,�) be a finite poset. The cover graph of P , denoted cover(P ), is the graph on
the elements of P where two distinct elements x, y are adjacent if and only if they are in a
cover relation in P ; that is, either x < y or x > y in P , and this relation cannot be deduced
from transitivity. Informally, the cover graph of P can be thought of as its order diagram
seen as an undirected graph. The dimension of P , denoted dim(P ), is the least positive
integer d for which there are d linear extensions L1, . . . , Ld of P so that x � y in P if and
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only if x � y in Li for each i ∈ {1, . . . , d}. We mention that an introduction to the theory of
posets and their dimension can be found in the monograph [9] and in the survey article [10].

When x and y are distinct elements in P , we write x ‖ y to denote that x and y are
incomparable. Also, we let Inc(P ) = {(x, y) | x, y ∈ X andx ‖ y inP } denote the set of
ordered pairs of incomparable elements in P . We denote by min(P ) the set of minimal
elements in P and by max(P ) the set of maximal elements in P . The downset of a set S ⊆ X

of elements is defined as D(S) = {x ∈ X | ∃s ∈ S such thatx � s inP }, and similarly we
define the upset of S to be U(S) = {x ∈ X | ∃s ∈ S such thats � x inP }.

A set I ⊆ Inc(P ) of incomparable pairs is reversible if there is a linear extension L of P

with x > y in L for every (x, y) ∈ I . It is easily seen that if P is not a chain, then dim(P ) is
the least positive integer d for which there exists a partition of Inc(P ) into d reversible sets.

A subset {(xi, yi)}ki=1 of Inc(P ) with k � 2 is said to be an alternating cycle if xi � yi+1
in P for each i ∈ {1, 2, . . . , k}, where indices are taken cyclically (thus xk � y1 in P

is required). For example, in the poset Q6 of Fig. 1 the pairs (ai, bi), (aj , bj ) form an
alternating cycle of length 2 for all i, j ∈ {1, . . . , 6} such that i �= j . An alternating cycle
{(xi, yi)}ki=1 is strict if, for each i, j ∈ {1, 2, . . . , k}, we have xi � yj in P if and only if
j = i+1 (cyclically). Note that in that case x1, x2, . . . , xk are all distinct, and y1, y2, . . . , yk

are all distinct. Notice also that every non-strict alternating cycle can be made strict by
discarding some of its incomparable pairs.

Observe that if I = {(xi, yi)}ki=1 is an alternating cycle in Inc(P ) then I cannot be
reversed by a linear extension L of P . Indeed, otherwise we would have yi < xi � yi+1
in L for each i ∈ {1, 2, . . . , k}, which cannot hold cyclically. Hence, alternating cycles are
not reversible. It is easily checked—and this was originally observed by Trotter and Moore
[11]—that every non-reversible subset I ⊆ Inc(P ) contains an alternating cycle, and thus a
strict alternating cycle:

Observation 2 A set I of incomparable pairs of a poset P is reversible if and only if I

contains no strict alternating cycle.

An incomparable pair (x, y) of a poset P is said to be a min-max pair if x is minimal
in P and y is maximal in P . The set of all min-max pairs in P is denoted by MM(P ).
Define dim∗(P ) as the least positive integer t such that MM(P ) can be partitioned into t

reversible subsets if MM(P ) �= ∅, and as being equal to 1 otherwise. For our purposes,
when bounding the dimension we will be able to focus on reversing only those incompa-
rable pairs that are min-max pairs. This is the content of Observation 3 below. In order to
state this observation formally we first need to recall some standard definitions from graph
theory.

By ‘graph’ we will always mean an undirected finite simple graph in this paper. The
treewidth of a graph G = (V ,E) is the least positive integer t such that there exist a tree T

and non-empty subtrees Tx of T for each x ∈ V such that

(i) V (Tx) ∩ V (Ty) �= ∅ for each edge xy ∈ E, and
(ii) |{x ∈ V | u ∈ V (Tx)}| � t + 1 for each node u of the tree T .

The pathwidth of G is defined as treewidth, except that the tree T is required to be a
path. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by con-
tracting edges. (We note that since we only consider simple graphs, loops and parallel edges
resulting from edge contractions are deleted). Recall that the class of graphs of treewidth at
most k (k � 0) is closed under taking minors, thus tw(H) � tw(G) for every graph G and
minor H of G.
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Given a class F of graphs, we let ̂F denote the class of graphs that can be obtained from
a graph G ∈ F by adding independently for each vertex v of G zero, one, or two new
pendant vertices adjacent to v. We will use the easy observation that ̂F = F when F is
the class of graphs of treewidth at most k (provided k � 1). We note that ̂F = F holds for
other classes F of interest, such as planar graphs.

The next elementary observation is due to Streib and Trotter [8], who were interested in
the case of planar cover graphs. We provide a proof for the sake of completeness.

Observation 3 Let F be a class of graphs. If P is a poset with cover(P ) ∈ F then there
exists a poset Q such that

(i) cover(Q) ∈ ̂F , and
(ii) dim(P ) � dim∗(Q).

Proof If P is a chain then we set Q = P and the statement can be easily verified.
Otherwise, let Q be the poset constructed from P as follows: For each non-minimal

element x of P , add a new element x′ below x (and its upset) such that x′ < x is the only
cover relation involving x′ in Q. Also, for each non-maximal element y of P , add a new
element y′′ above y (and its downset) such that y < y′′ is the only cover relation involving
y′′ in Q. Now, the cover graph of Q is the same as the cover graph of P except that we
attached up to two new pendant vertices to each vertex.

For convenience, we also define an element x′ for each minimal element x of P , simply
by setting x′ = x. Similarly, we let y′′ = y, for each maximal element y of P .

Observe that if a set L of linear extensions of Q reverses all min-max pairs of Q then it
must reverse all incomparable pairs of P . Indeed, for each pair (x, y) ∈ Inc(P ) consider the
min-max pair (x′, y′′) in Q. There is some linear extension L ∈ L reversing (x′, y′′). Given
that x′ � x and y � y′′ in Q, it follows that y � y′′ < x′ � x in L. Hence, restricting
the linear orders in L to the elements of P we deduce that L reverses all pairs in Inc(P ) so
dim(P ) � |L| (as P is not a chain). Therefore, dim(P ) � dim∗(Q).

As a corollary, for treewidth we obtain:

Observation 4 For every poset P there exists a poset Q such that

(i) tw(cover(P )) = tw(cover(Q)), and
(ii) dim(P ) � dim∗(Q).

Proof This follows from Observation 3 if tw(cover(P )) � 1. If, on the other hand,
tw(cover(P )) = 0, then P is an antichain and we can simply take Q = P .

In the next observation we consider posets with disconnected cover graphs. As expected,
we define the components of a poset P as the subposets of P induced by the components of
its cover graph.

Observation 5 If P is a poset with k � 2 components C1, . . . , Ck then either

(i) P is a disjoint union of chains and we have dim(P ) = dim∗(P ) = 2, or
(ii) dim(P ) = max{dim(Ci) | i = 1, . . . , k} and

dim∗(P ) = max{dim∗(Ci) | i = 1, . . . , k}.
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Proof If for each i ∈ {1, . . . , k} the subposet Ci of P is a chain then it is easy to see that
dim(P ) = dim∗(P ) = 2. Thus we may assume that this is not the case, that is, dim(Ci) � 2
for some i ∈ {1, . . . , k}.

For each i ∈ {1, . . . , k} letRi be a family of dim(Ci) linear extensions of Ci witnessing
the dimension of Ci . We construct a family R of linear extensions of P in the following
way. First, letR := ∅. Then, as long as there is a setRi which is not empty,

(i) choose a linear extension Li ∈ Ri for each i ∈ {1, . . . , k} such thatRi is not empty;
(ii) choose any linear extension Li of Ci for each i ∈ {1, . . . , k} such thatRi is empty;
(iii) add toR the linear extension L of P defined by L := L1 < L2 < . . . < Lk , and
(iv) remove Li fromRi for each i ∈ {1, . . . , k}.
Clearly, |R| = max{dim(Ci) | i ∈ {1, . . . , k}}. Now consider one arbitrarily chosen linear
extension L ∈ R; say we had L = L1 < . . . < Lk when it was defined above, and replace
L by L′ := Lk < . . . < L1 in R. It is easy to verify that the resulting family R reverses
all incomparable pairs in P . In particular, all incomparable pairs of P with elements from
distinct components are reversed by L′ and any other linear extension inR (note there is at
least one more as dim(Ci) � 2 for some i). This shows that dim(P ) = max{dim(Ci) | i ∈
{1, . . . , k}}.

The proof for dim∗(P ) goes along the same lines and is thus omitted.

To prove the next observation we partition the minimal and maximal elements of a poset
by ‘unfolding’ the poset from an arbitrary minimal element, and contract some part of the
poset into a single element. This proof idea is due to Streib and Trotter [8], and is very
useful for our purposes. In [8] it was used in the context of planar cover graphs but it works
equally well for any minor-closed class of graphs.

Observation 6 For every poset P there exists a poset Q such that

(i) cover(Q) is a minor of cover(P ) (and thus in particular tw(cover(Q)) �
tw(cover(P )));

(ii) there is an element q0 ∈ min(Q) with q0 < q in Q for all q ∈ max(Q), and
(iii) dim∗(P ) � 2 dim∗(Q).

Proof First of all, we note that it is enough to prove the statement in the case where
cover(P ) is connected. Indeed, if cover(P ) is disconnected then by Observation 5 either P

is a disjoint union of chains and dim(P ) = dim∗(P ) = 2, in which case the observation
is trivial, or dim∗(P ) = max{dim∗(C) | C component of P } and we can simply consider a
component C of P with dim∗(P ) = dim∗(C).

From now on we suppose that cover(P ) is connected. We are going to build a small set of
linear extensions of P reversing all min-max pairs of P . Partition the minimal and maximal
elements of P as follows. Choose an arbitrary element a0 ∈ min(P ), let A0 = {a0}, and for
i = 1, 2, 3, . . . let

Bi = {b ∈ max(P ) −
⋃

1�j<i

Bj | there exists a ∈ Ai−1 with a < b in P },

Ai = {a ∈ min(P ) −
⋃

0�j<i

Aj | there exists b ∈ Bi with a < b in P }.

Let k be the least index such that Ak is empty. See Fig. 2 for an illustration. The fact that
each minimal and maximal element of P is included in one of the sets defined above follows
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Fig. 2 Schematic drawing of P and the sets A0, A1, . . . , Ak−1 and B1, . . . , Bk

from the connectivity of cover(P ). If k = 1 then a0 is below all maximal elements of P and
hence P itself satisfies conditions (i)-(iii). So we may assume k � 2 from now on.

Let Qi+1
i be the poset on the set of elements Xi+1

i = Ai ∪ Bi+1 ∪ (

U(Ai) ∩ D(Bi+1)
)

with order relation inherited from P . Figure 3 illustrates this definition. Let

t = max{dim∗(Qi+1
i ) | i = 0, . . . , k − 1}.

For each i ∈ {0, . . . , k − 1} consider t linear extensions Li
1, . . . , L

i
t of Qi+1

i that reverse
all pairs from the set MM(Qi+1

i ). Combining these we define t linear extensions of P . For
j ∈ {1, . . . , t} let Lj be a linear extension of P that contains the linear order

Lk−1
j < · · · < L1

j < L0
j .

Then, L1, . . . , Lt reverse all pairs (a, b) ∈ MM(P ) with a ∈ Ai and b ∈ Bj where
j � i + 1. In a similar way we are able to reverse the pairs where j � i.

LetQi
i be the poset on the set of elementsXi

i = Ai ∪Bi ∪
(

U(Ai)∩D(Bi)
)

being ordered
as in P . We set t ′ = max{dim∗(Qi

i) | i ∈ {1, . . . , k − 1}} and for each i ∈ {1, . . . , k − 1}
we fix t ′ linear extensions Li

1, . . . , L
i
t ′ of Qi

i reversing all pairs from MM(Qi
i). Again,

we combine these to obtain linear extensions of P . For j ∈ {1, . . . , t ′} let L′
j be a linear

extension of P that contains the linear order

L1
j < L2

j < · · · < Lk−1
j .

Clearly, L′
1 . . . , L′

t ′ reverse all pairs (a, b) ∈ MM(P ) with a ∈ Ai and b ∈ Bj where
j � i. It follows that L1, . . . , Lt , L

′
1 . . . , L′

t ′ reverse the set MM(P ) and hence dim∗(P ) �
t + t ′.

Now suppose first t > t ′, so in particular t > 1. Then let � ∈ {0, . . . , k − 1} such that
t = dim∗(Q�+1

� ). Note that we must have � � 1 since dim∗(Q1
0) = 1 < t . We define

Q to be the poset that is obtained from Q�+1
� by adding an extra element q which is such

that q > x for all x ∈ X�+1
� ∩ D(B�), and incomparable to all other elements of Q�+1

�

(here we need � � 1 so that B� exists). In particular, q > a for all a ∈ A�. Observe that

Fig. 3 Definition of Qi+1
i and construction of Q with its cover graph
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the cover graph of Q is an induced subgraph of cover(P ) with an extra vertex q linked
to some of the other vertices. Here, q can be seen as the result of the contraction of the
connected set

⋃

1�j�� D(Bj ) − X�+1
� plus the deletion of some of the edges incident to

the contracted vertex (see Fig. 3 with i = �, dashed edges indicate deletions). The deletion
step is necessary, as after the contraction it might be that some edges incident to q do not
correspond to cover relations anymore. It follows that cover(Q) is a minor of cover(P ).
Furthermore, it holds that

dim∗(P ) � 2t = 2 dim∗(Q�+1
� ) � 2 dim∗(Q).

Therefore, the dual of Q satisfies conditions (i)-(iii).
The case t ′ � t goes along similar lines as in the first case (with the slight difference that

we do not need to exclude the subcase t ′ = 1). We leave the details to the reader.

Applying these observations we move from Theorem 1 to a more technical statement.

Theorem 7 Let P be a poset with

(i) a cover graph of treewidth at most 2, and
(ii) a minimal element a0 ∈ min(P ) such that a0 < b for all b ∈ max(P ).

Then the set MM(P ) can be partitioned into 638 reversible sets.

In order to deduce Theorem 1 from Theorem 7 consider any poset P with cover graph of
treewidth at most 2. By Observation 4 there is a poset Q with tw(cover(Q)) � 2 and dim
(P ) � dim∗(Q). Now by Observation 6 and applying Theorem 7 there is a poset R with tw
(cover(R)) � 2, a minimal element a0 ∈ min(R) such that a0 < b for all b ∈ max(R), and

dim(P ) � dim∗(Q) � 2 dim∗(R) � 2 · 638 = 1276,

as desired.
From now on we focus on the proof of Theorem 7. Let P = (X,�) be a poset fulfilling

the conditions of Theorem 7. Consider a tree decomposition of width at most 2 of cover(P ),
consisting of a tree T and subtrees Tx for each x ∈ X. We may assume that the width of the
decomposition is exactly 2, since otherwise dim(P ) � 3 by the result of Trotter and Moore
[11], and the theorem follows trivially.

For each node u of T let B(u) denote its bag, namely, the set {x ∈ X | u ∈ V (Tx)}. Since
the tree decomposition has width 2, every bag has size at most 3, and at least one bag has
size exactly 3. Modifying the tree decomposition if necessary, we may suppose that every
bag has size 3. Indeed, say uv is an edge of T with |B(u)| = 3 and |B(v)| � 2. Then choose
arbitrarily 3 − |B(v)| elements from B(u) \ B(v) and add them to B(v). Repeating this
process as many times as necessary, we eventually ensure that every bag has size 3. Note
that the subtrees Tx (x ∈ X) of the tree decomposition are uniquely determined by the bags,
and vice versa; thus, it is enough to specify how T and the bags are modified. The above
modification repeatedly adds leaves to some of the subtrees Tx (x ∈ X), which clearly keeps
the fact that T and the subtrees Tx (x ∈ X) form a tree decomposition of cover(P ).

Recall that, by the assumptions of Theorem 7, the poset P has a minimal element a0
with a0 < b for all b ∈ max(P ). This implies that the cover graph of P is connected. Using
this, we may suppose without loss of generality that |B(u) ∩ B(v)| � 1 for each edge uv of
T . For if this does not hold, then the bags of one of the two components of T − uv are all
empty (as is easily checked), and thus the nodes of that component can be removed from T

without affecting the tree decomposition.
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In fact, we may even assume that |B(u)∩B(v)| = 2 holds for every edge uv of T . To see
this, consider the following iterative modification of the tree decomposition: Suppose that
uv is an edge of T such that t := |B(u) ∩ B(v)| �= 2. If t = 3 then simply identify u and v,
and contract the edge uv in T . If t = 1 then subdivide the edge uv in T with a new node w,
and let the bag B(w) of w be the set (B(u) ∩ B(v)) ∪ {x, y}, where x and y are arbitrarily
chosen elements in B(u) \ B(v) and B(v) \ B(u), respectively. These modifications are
valid, in the sense that the bags still define a tree decomposition of cover(P ) of width 2, and
in order to ensure the desired property it suffices to apply them iteratively until there is no
problematic edge left.

To summarize, in the tree decomposition we have |B(u)| = 3 for every node u of T ,
and |B(u) ∩ B(v)| = 2 for every edge uv of T . We will need to further refine our tree
decomposition so as to ensure a few extra properties. These changes will be explained one
by one below. Let us mention that we will keep the fact that |B(u) ∩ B(v)| = 2 for every
edge uv of T , and that |B(u)| = 3 for every internal node u of T . However, we will add
new leaves to T having bags of size 2 only.

Choose an arbitrary node r ′ ∈ V (T ) with a0 ∈ B(r ′). Add a new node r to T and make
it adjacent to r ′. The bag B(r) of r is defined as the union of a0 and one arbitrarily chosen
element from B(r ′) − {a0}. (Observe that the size of B(r) is only 2; on the other hand, we
do have |B(r) ∩ B(r ′)| = 2.) We call r the root of T , and thus see T as being rooted at r .
(For a technical reason we need the root to be a leaf of T , which explains why we set it up
this way.) Every non-root node u in T has a parent p(u) in T , namely, the neighbor of u on
the path from u to r in T . Now we have an order relation on the nodes of T , namely u � v

in T if u is on the path from r to v in T . The following observation will be useful later.

Observation 8 If v1, . . . , vn is a sequence of nodes of T such that consecutive nodes are
comparable in T (that is vi � vi+1 or vi+1 � vi in T for each i ∈ {1, . . . , n − 1}), then
there is an index j ∈ {1, . . . , n} such that vj � vi in T for each i ∈ {1, . . . , n}.
Proof We prove this by induction on n. For n = 1 it is immediate. So suppose that n > 1.
Then we can apply the induction hypothesis on the sequence v1, . . . , vn−1 and get j ∈
{1, . . . , n−1} such that vj � vi for each i ∈ {1, . . . , n−1}. As vn−1 and vn are comparable
in T , we have vn−1 � vn or vn � vn−1 in T . In the first case we conclude vj � vn−1 � vn

in T and we are done. In the second case we have {vj , vn} � vn−1 in T , which makes
vj and vn comparable in T . But clearly, from this it follows that vj � vi in T for each
i ∈ {1, . . . , n} or vn � vi in T for each i ∈ {1, . . . , n}.

Fix a planar drawing of the tree T with the root r at the bottom. Suppose that v and v′
are two nodes of T that are incomparable in T . Take the maximum node u (with respect to
the order in T ) such that u � v and u � v′ in T . We denote this node by v ∧ v′. Observe
that u has degree at least 2 in T , and hence is distinct from the root r . (Ensuring this is the
reason why we made sure that the root r is a leaf.) Consider the edge p from u to p(u), the
edge e from u towards v and the edge e′ from u towards v′. All these edges are distinct. If
the clockwise order around u in the drawing is p, e, e′ for these three edges, then we say
that v is to the left of v′ in T , otherwise the clockwise order around u is p, e′, e and we say
that v is to the right of v′ in T . Observe that the relations “is left of in T ” and “is right of in
T ” both induce a linear order on any set of nodes which are pairwise incomparable in T .

Observation 9 Let v and v′ be incomparable nodes in T with v left of v′ in T , and let
u := v ∧ v′. If w and w′ are the neighbors of u on the paths towards v and v′ in T ,
respectively, then for each node c in T we have that
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Fig. 4 We have the following properties in this example: (a, b) ∈ MM(P ) with aT left of bT in T , and
u = aT ∧ bT (and hence u < aT and u < bT in T ). We also have B(u) = {a0, a, b} here

(i) v is left of c in T if w′ � c in T , and
(ii) c is left of v′ in T if w � c in T .

Proof If w′ � c in T , then we also have u = v ∧ c, and the first edge on the path from u to
c in T is the same as that of the path from u to v′ in T . Since v is left of v′ in T , it follows
that v is left of c as well. The proof for the second item is analogous.

Next we modify once more the tree decomposition. For each element a ∈ min(X) such
that (a, b) ∈ MM(P ) for some b ∈ max(X), choose arbitrarily a node wa of T such that
a ∈ B(wa). Similarly, for each element b ∈ max(X) such that (a, b) ∈ MM(P ) for some
a ∈ min(X), choose arbitrarily a node wb of T such that b ∈ B(wb). (Note that the same
node of T could possibly be chosen more than once.) Now that all these choices are made,
for each minimal element a of P considered above, add a new leaf aT to T adjacent to
wa with bag B(aT ) := {a, x}, where x is an arbitrarily chosen element from B(wa) \ {a}.
Similarly, for each maximal element b of P considered above, add a new leaf bT to T

adjacent to wb with bag B(bT ) := {b, x}, where x is an arbitrarily chosen element from
B(wb) \ {b}.

This concludes our modifications of the tree decomposition. Notice that we made sure
that |B(u)| = 3 for every internal node u of T , and that |B(u) ∩ B(v)| = 2 for every
edge uv of T . Observe also that for every pair (a, b) ∈ MM(P ), the two nodes aT and bT

are incomparable in T , and thus one is to the left of the other in T . Figure 4 provides an
illustration. (We also note that while the tree T has been modified since stating Observations
8 and 9, they obviously still apply to the new tree T ).

Let G be the intersection graph of the subtrees Tx (x ∈ X) of T . Thus two distinct
elements x, y ∈ X are adjacent in G if and only if V (Tx) ∩ V (Ty) �= ∅. The graph G is
chordal and the maximum clique size in G is 3. Hence the vertices of G can be (properly)
colored with three colors. We fix a 3-coloring φ of X which is such that x, y ∈ X receive
distinct colors whenever V (Tx) ∩ V (Ty) �= ∅. In particular, if x and y are two distinct
elements of P such that x, y ∈ B(u) for some u ∈ V (T ) then x and y receive different
colors.
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We end this section with a fundamental observation which is going to be used repeatedly
in a number of forthcoming arguments. We say that a relation x � y in P hits a set Z ⊆ X

if there exists z ∈ Z with x � z � y in P .

Observation 10 Let x � y in P and let u, v ∈ V (T ) be such that x ∈ B(u), y ∈ B(v).

(i) If w ∈ V (T ) lies on the path from u to v in T then x � y hits B(w).
(ii) If e = w1w2 ∈ E(T ) lies on the path from u to v in T then x � y hits B(w1)∩B(w2).
(iii) Ifw1, . . . , wt ∈ V (T ) are t nodes on the path from u to v in T appearing in this order,

then there exist zi ∈ B(wi) for each i ∈ {1, . . . , t} such that x � z1 � · · · � zt � y

in P .

Proof Suppose that w lies on a path from u to v in T . Since x � y in P there is a path
x = z0, z1, . . . , zk = y in G such that zi < zi+1 is a cover relation in P for each i ∈
{0, 1, . . . , k − 1}. This means that

⋃

0�i�k Tzi
is a (connected) subtree of T containing u

and v. Thus,
⋃

0�i�k Tzi
contains w and therefore there exists i with zi ∈ B(w). The proof

of (ii) is analogous.
We prove (iii) by induction on t . For t = 1 this corresponds to (i), so let us assume

t > 1 and consider the inductive case. By induction there exist zi ∈ B(wi) for each i ∈
{1, . . . , t −1} such that x � z1 � · · · � zt−1 � y in P . Applying (i) with relation zt−1 � y

and the wt−1–v path, we obtain that zt−1 � zt � y in P for some zt ∈ B(wt ). Combining,
we obtain x � z1 � · · · � zt � y in P , as desired.

3 The Proof

We aim to partition MM(P ) into a constant number of sets, each of which is reversible. This
will be realized with the help of a signature tree, which is depicted on Fig. 5. This plane
tree �, rooted at node ν1, assigns to each pair (a, b) ∈ MM(P ) a corresponding leaf of �

according to properties of the pair (a, b).
The nodes ν1, . . . , ν15 of � are enumerated by depth-first and left-to-right search. Each

node νi which is distinct from the root and not a leaf has a corresponding function of the
form αi : MM(P, νi) → �i , where MM(P, νi) ⊆ MM(P ) and �i is a finite set, whose
size does not depend on P . We put MM(P, ν1) = MM(P ) and the other domains will be
defined one by one in this section. To give an example, let us look forward to upcoming
subsections where we define α1 and α2 as follows.

• α1(a, b) ∈ �1 = {left, right} encodes whether aT is to the left or to the right of bT in T ;
• α2(a, b) ∈ �2 = {yes, no} is the answer to the question “Is there an element q ∈

B(aT ∧ bT ) with a � q in P ?”.

Furthermore, for each internal node νi with children νi1 , . . . , νil in �, the edges
νiνi1 , . . . , νiνil of � are respectively labeled by subsets �(νi, νi1), . . . , �(νi, νil ) of �i

such that �i = �(νi, νi1)�· · ·��(νi, νil ), that is, so that the sets �(νi, νij ) form a partition
of �i . For example,

�(ν1, ν2) = {left, right} = �1;
�(ν2, ν3) = {no};
�(ν2, ν4) = {yes}.

Observe that each internal node νi of � has either one or two children; in particular, if νi

has only one child then the corresponding edge is labeled with the full set �i .
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Fig. 5 The signature tree �. Each of the three branching nodes ν2, ν4, and ν6 corresponds to a yes/no
question, and the edges towards their children are labeled according to the possible answers. Edges starting
from a non-branching node νi to a node νj are labeled with the size of �(νi , νj )

The reader may wonder why we do not refine the tree � and have an edge out of νi for
every possible value in �i . This is because sometimes several values in �i will correspond
to analogous cases in our proofs which can be treated all at once. To give a concrete example,
consider �(ν1, ν2) = {left, right}: When proving that a set S of min-max pairs is reversible,
the case that aT is left of bT for every (a, b) ∈ S is analogous to the case that aT is
right of bT for every (a, b) ∈ S, as one is obtained from the other by exchanging the
notion of left and right in T (that is, by replacing the plane tree T by its mirror image).
Hence it will be enough to only consider, say, the case where aT is to the left of bT for
every (a, b) ∈ S.

Now for an internal node νi of � distinct from the root (i �= 1), let ν1 = νi1 , . . . , νil = νi

be the path from the root ν1 to νi in �. Define the signature of νi as the set

�(νi) = �(νi1 , νi2) × . . . × �(νil−1 , νil ) (1)

and let

MM(P, νi) = {(a, b) ∈ MM(P ) | (αi1(a, b), . . . , αil−1(a, b)) ∈ �(νi)};
MM(P, νi, �) = {(a, b) ∈ MM(P ) | (αi1(a, b), . . . , αil−1(a, b)) = �} for � ∈ �(νi).

Observe that by this definition, for each internal node νi of � with children νi1 , . . . , νil

we get the partition

MM(P, νi) =
⋃

1�j�l

MM(P, νij ).
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Therefore, by construction the sets MM(P, νi) with νi a leaf of � (so for ν3, ν7, ν10, ν15)
form a partition of MM(P ). With a further refinement it follows that

MM(P ) =
⋃

νi leaf of�

⋃

�∈�(νi )

MM(P, νi, �)

and the proof below boils down to showing that MM(P, νi, �) is reversible for each leaf νi

of � and each � ∈ �(νi).
Once this is established we get an upper bound on dim∗(P ) just by counting the number

of sets in our partition of MM(P ), namely

dim∗(P ) �
∑

νi leaf of �

|�(νi)| = |�(ν3)| + |�(ν7)| + |�(ν10)| + |�(ν15)|

= 2 + 2 · 6 + 2 · 6 · 2 · 2 + 2 · 6 · 6 · 4 · 2 = 638.

Note that the calculation for the particular summands follows from (1) and the edge
labelings in Fig. 5. Our proof will follow a depth-first, left-to-right search of the signature
tree �, defining the functions αi one by one in that order, and showing that for each � ∈
�(νi) the set MM(P, νi, �) is reversible when encountering a leaf νi . Hence, the tree �

also serves as a road map of the proof. Moreover, for the reader’s convenience we included
a table collecting all functions αi and their meanings, see Table 1. It is not necessary to read
this table now, but it might be helpful while going through the main proof.

Now that the necessary definitions are introduced and the preliminary observations are
made, we are about to consider the nodes of the signature tree one by one, stating and
proving many technical statements along the way. At this point the reader might legitimately
wonder why it all works, that is, what are the basic ideas underlying our approach. While
we are unable to offer a general intuition—indeed, this is why we believe that better insights
into these posets remain to be obtained—we can at least explain a couple of the strategies
we repeatedly apply in our proofs.

A first strategy builds on the fact that when choosing three times an element in a 2-
element set, some element is bound to be chosen at least twice: As a toy example, suppose
that {(ai, bi)}ki=1 is a strict alternating cycle with k � 3 in some subset I ⊆ MM(P )

which we are trying to prove is reversible. Suppose further that we somehow previously
established that the aT

i –b
T
i+1 path in T includes a specific edge uv of T for at least three

distinct indices i ∈ {1, . . . , k}; which indices is not important, so let us say this happens
for indices 1,2,3. Then by Observation 10 the relation ai � bi+1 hits B(u) ∩ B(v) for each
i = 1, 2, 3. Given that |B(u) ∩ B(v)| = 2, this implies that some element x ∈ B(u) ∩ B(v)

is hit by two of these relations, that is, we have ai � x � bi+1 and aj � x � bj+1
in P for some i, j ∈ {1, 2, 3} with i < j . However, this implies ai � x � bj+1 in P ,
contradicting the fact that the alternating cycle is strict. (Here we use that k � 3.) Therefore,
the alternating cycle {(ai, bi)}ki=1 could not have existed in the first place. More generally,
when analyzing certain situations we claim cannot occur, we will typically easily find two
relations c1 � d1 and c2 � d2 in P both hitting B(u) ∩ B(v) for some edge uv of T , and
which are incompatible, in the sense that they cannot hit the same element. The work then
goes into pinning down a third relation c3 � d3 in P which is incompatible with the first
two, and yet hits B(u) ∩ B(v). (The fact that a0 � b in P for every b ∈ max(P ) will often
be helpful here.)

A second strategy is to see certain strict alternating cycles as inducing a graph on
MM(P ), and then study and exploit properties of said graph. This is natural for strict alter-
nating cycles of length 2: Any such cycle (a1, b1), (a2, b2) can be seen as inducing an edge
between vertex (a1, b1) and vertex (a2, b2). If we somehow can show that the resulting
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Table 1 Table of functions and their meanings

Function Section Meaning

φ 2 Proper 3-coloring of the intersection
graph of the subtrees Tx(x ∈ X) of
T . That is, φ(x) �= φ(y) whenever
V (Tx) ∩ V (Ty) �= ∅.

α1 3.1 Assigns ‘left’ or ‘right’ to pairs
(a, b) depending on whether aT lies
to the left or to the right of bT in T .

α2 3.1 Records the answer to the question:
“Is there an element q ∈ B(uab)

such that a � q in P ?”

α4 3.3 Records the answer to the question:
“Is there an element q ∈ B(uab) ∩
B(pab) such that a � q in P ?”

α5 3.3 α5(a, b) =
(φ(xab), φ(yab), φ(zab)), where
B(uab) = {xab, yab, zab} and
xab, yab, zab satisfy:

• a � xab �� b in P ;

• B(uab) ∩ B(pab) = {yab, zab};
• a �� yab � binP ;

• a0 � yabinP ;

• a �� zab inP , and

• yab ∈ B(uab) ∩ B(wab).

α6 3.4 Records the answer to the question
“IsB(uab)∩B(wab) = {xab, yab}?”.

α8 3.6 Given (a, b) ∈ MM(P, ν8), let
� ∈ �8 be such that (a, b) ∈
MM(P, ν8, �). Then α8(a, b) =
ψ8,�(a, b), where ψ8,� is a 2-
coloring of the graph S� of special
2-cycles.

α9 3.7 Given (a, b) ∈ MM(P, ν9, �) for
some � ∈ �(ν9), function α9
records the color ψ9,�(a, b), where
ψ9,� is a coloring of K� .

α11 3.9 α11(a, b) =
(φ(xab), φ(yab), φ(zab)), where
B(uab) = {xab, yab, zab} and
xab, yab, zab satisfy:

• B(uab) ∩ B(pab) = {xab, yab};
• a � xab �� yab in P , and

• a �� yab � b in P .

α12 3.10 Given (a, b) ∈ MM(P, ν12),
α12(a, b) records the answers to the
questions “Is a � zab in P ”, “Is
zab � b in P ?”, and “Is a0 � xab

in P ?”.
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Table 1 (continued)

Function Section Meaning

α13 3.11 Given (a, b) ∈ MM(P, ν13, �),
function α13 records the color of the
pair (a, b) in the 4-coloring ψ13,�
of the graph J� . The purpose of
α13 is to get rid of 2-cycles in
MM(P, ν13, �).

α14 3.12 Given (a, b) ∈ MM(P, ν14, �),
function α14 records the color of the
pair (a, b) in the 2-coloring ψ14,�

of the graph K̂� . The purpose of
α14 is to get rid of strict alternat-
ing cycles of length at least 3 in
MM(P, ν14, �).

graph has bounded chromatic number, then we can consider a corresponding coloring of
the pairs, and we will know that within a color class there are no strict alternating cycles
of length 2 left. Thus, by doing so we ‘killed’ all such cycles by partitioning the pairs in a
constant number of sets. Such a strategy is used twice in the proof, when considering nodes
ν8 and ν13 of the signature tree �. We also use a variant of it tailored to handle certain
strict alternating cycles of length at least 3 and involving a directed graph on MM(P ), when
considering nodes ν9 and ν14 of �.

We now turn to the proof. From now on we will use the following notations for a given
pair (a, b) ∈ MM(P ): We let uab := aT ∧ bT , pab := p(uab), and denote by vab and wab

the neighbors of uab in T towards aT and bT , respectively. Figure 6 illustrates the newly
defined nodes.

Fig. 6 Pair (a, b) ∈ MM(P ) with α1(a, b) = left and the corresponding nodes pab , uab , vab , and wab in T
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3.1 Nodes ν1 and ν2 and their respective functions α1 and α2

We start with the definition of α1, which belongs to the node ν1 of the signature tree �.

Let us proceed with node ν2 and its function α2.

Note that it might be the case that all elements of B(uab) are incomparable with a (so
the answer is “no”), while there is always an element q ∈ B(uab) such that q � b in P

as the comparability a0 � b hits the bag B(uab). In the next section we treat all the pairs
(a, b) ∈ MM(P ) with α2(a, b) = no and it turns out that they can easily be reversed.

3.2 First leaf of �: the node ν3

Incomparable pairs of MM(P, ν3) received one of the two possible signatures in �(ν3) =
{(left, no), (right, no)}. We start by showing that pairs with these signatures are reversible.

Claim 11 MM(P, ν3, �) is reversible for each � ∈ �(ν3).
Proof Let � ∈ �(ν3) = {(left, no), (right, no)}. We will assume that � = (left, no), thus
α1(a, b) = left for pairs (a, b) ∈ MM(P, ν3, �). In the other case it suffices to exchange
the notion of left and right in the following argument. (We note that we will start with that
assumption in all subsequent proofs, for the same reason.)

Arguing by contradiction, suppose that there is a strict alternating cycle {(ai, bi)}ki=1 in
MM(P, ν3, �). Thus ai � bi+1 in P for all i (cyclically). Let bT

j be leftmost in T among all

the bT
i ’s (i ∈ {1, . . . , k}). The node aT

j is to the left of bT
j (as (aj , bj ) ∈ MM(P, ν3, �), so α1

(aj ,bj ) = left), and thus to the left of all thebT
i ’s.Hence, the path fromaT

j tobT
j+1 inT goes th-

rough the node uaj bj
. By Observation 10, the relation aj � bj+1 in P hits B(uaj bj

), contra-
dictingα2(aj , bj ) = no (recall that (aj , bj ) ∈ MM(P,ν3, �), and thusα2(aj , bj ) = no).

As a consequence of Claim 11, all the pairs (a, b) ∈ MM(P ) being considered in the
following satisfy α2(a, b) = yes (see how this fact can be read from the signature tree �).

3.3 Nodes ν4 and ν5 and their respective functions α4 and α5

For all pairs (a, b) in MM(P, ν4) it holds that there is q ∈ B(uab) such that a � q in P ,
but it is not clear whether there is such an element being also contained in B(pab). It is the
purpose of function α4 to distinguish the two possible cases at this point.
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Before defining the function α5 we first show some useful properties of pairs in
MM(P, ν5, �) for � ∈ �(ν5). Note that these pairs (a, b) satisfy α2(a, b) = yes and
α4(a, b) = no.

Claim 12 Let � ∈ �(ν5) and suppose that {(ai, bi)}ki=1 is an alternating cycle in
MM(P, ν5, �). Let ui denote uaibi

, for each i ∈ {1, 2, . . . , k}. Then
(i) ui and ui+1 are comparable in T for each i ∈ {1, 2, . . . , k}, and
(ii) there is an index j ∈ {1, 2, . . . , k} such that uj � ui in T for each i ∈ {1, 2, . . . , k}.

Proof Let � ∈ �(ν5) = {(left, yes, no), (right, yes, no)}. Again we may assume � =
(left, yes, no) as the other case is symmetrical. Thus α1(ai, bi) = left for each i ∈
{1, . . . , k}.

We denote uaibi
, waibi

, paibi
by ui, wi, pi respectively, for each i ∈ {1, 2, . . . , k}.

To prove the first item observe that since α4(ai, bi) = no for all pairs (ai, bi), and since
ai � bi+1 in P , we have ui < bT

i+1 in T . Indeed, otherwise the path from aT
i to bT

i+1 in T

would go through ui and pi , and hence ai � bi+1 would hit B(ui) ∩ B(pi), contradicting
α4(ai, bi) = no. Clearly ui+1 < bT

i+1 in T . Therefore, {ui, ui+1} < bT
i+1 in T , which makes

ui and ui+1 comparable in T .
The second item follows immediately from the first item and Observation 8.

Thanks to Claim 12 we know that for every � ∈ �(ν5), each alternating cycle in
MM(P, ν5, �) can be written as {(ai, bi)}ki=1 in such a way that ua1b1 � uaibi

in T for
i ∈ {1, . . . , k}. We may further assume that the pair (a1, b1) is chosen in such a way
that

(i) if α1(a1, b1) = left then bT
1 is to the right of bT

i in T for each i ∈ {2, . . . , k} satisfying
ua1b1 = uaibi

.
(ii) if α1(a1, b1) = right then bT

1 is to the left of bT
i in T for each i ∈ {2, . . . , k} satisfying

ua1b1 = uaibi
.

Note that the pair (a1, b1) is uniquely defined; we call it the root of the alternating cycle.
Now for each � ∈ �(ν5) and (a, b) ∈ MM(P, ν5, �) we take a closer look at elements

in B(uab). The bag B(uab) consists of three distinct elements; let us denote them xab, yab,
zab. Given that α2(a, b) = yes and α4(a, b) = no, we may assume without loss of generality

a � xab �� b inP ; (2)

B(uab) ∩ B(pab) = {yab, zab}. (3)

Recall that the uabwab edge lies on the path from r to bT in T . This implies that the relation
a0 � b hits B(uab) ∩ B(wab). Clearly, it cannot hit xab, and thus a0 � b hits at least one of
yab, zab. Let us suppose without loss of generality that this is the case for yab. It follows that

a �� yab � b inP ; (4)

a0 � yab inP ; (5)

a �� zab inP ; (6)

yab ∈ B(uab) ∩ B(wab). (7)

With these notations, we define α5 in the following way:
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(Recall that φ(w) is the color of the elementw ∈ X in the 3-coloring φ of the intersection
graph defined by the subtrees Tx (x ∈ X), and that xab, yab, zab have distinct colors.) Hence
there are 6 possible answers for α5(a, b). In the following when considering nodes νi of �

that are descendants of ν5, all we will need is that min-max pairs (a, b) ∈ MM(P, νi, �)

have the same value α5(a, b) but the value itself will not be important. This is why � does
not branch at ν5.

3.4 Node ν6 and its function α6

Before defining the next function α6, let us show some useful properties of strict alternating
cycles in MM(P, ν6, �) for � ∈ �(ν6). These properties will be used not only when
considering the second leaf ν7 of � but also later on when considering the third leaf ν10.

Now, recall that pairs (a, b) ∈ MM(P, ν6) satisfy

• α2(a, b) = yes, and hence there is q ∈ B(uab) with a � q in P ,
• α4(a, b) = no, and hence there is no q ∈ B(uab) ∩ B(pab) such that a � q in P ,
• the elements of B(uab) can be labeled with xab, yab, zab such that (2)–(7) hold.

We need these properties and the mentioned labeling for the following claim.

Claim 13 Let � ∈ �(ν6) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν6, �) with root (a1, b1). Let ui, wi denote uaibi

, waibi
respectively, for each i ∈

{1, 2, . . . , k}. Then u1 < w1 � uk < bT
1 in T .

Proof We denote paibi
, xaibi

, yaibi
, zaibi

by pi, xi, yi, zi respectively, for each i ∈
{1, 2, . . . , k}. We assume that α1(a, b) = left for each (a, b) ∈ MM(P, ν6, �). In particular,
α1(ai, bi) = left for each i ∈ {1, 2, . . . , k}.

The path from aT
k to bT

1 in T cannot go through the edge ukpk , since otherwise by
Observation 10 the relation ak � b1 would hit B(uk) ∩ B(pk) which contradicts the fact
that α4(ak, bk) = no. This implies uk < bT

1 in T .
Next we prove that u1 �= uk . Suppose to the contrary that u1 = uk . Then uk lies on the

paths from aT
k to r and from bT

1 to r in T , implying that aT
k ∧ bT

1 � uk in T .
If aT

k ∧ bT
1 = uk then the path from aT

k to bT
1 in T goes through uk . Thus, the relation

ak � b1 hits B(uk) = {xk, yk, zk} and hence ak � xk � b1 in P (as ak �� yk and ak �� zk

in P ). Since B(uk) = B(u1) and α5(a1, b1) = α5(ak, bk) implying φ(xk) = φ(x1), we get
xk = x1. Now a1 � x1 = xk � b1 in P gives a contradiction.

If aT
k ∧bT

1 > uk in T then it follows that vk � bT
1 in T . By Observation 9(ii) we conclude

that bT
1 is left of bT

k in T . Since uk = u1, this contradicts the fact that (a1, b1) is the root of
{(ai, bi)}ki=1.

Therefore, u1 �= uk as claimed, and u1 < uk < bT
1 in T . Given the definition of w1 and

the fact that uk < bT
1 in T , we deduce u1 < w1 � uk < bT

1 in T .

Claim 14 Let � ∈ �(ν6) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν6, �) with root (a1, b1). Let ui, wi denote uaibi

, waibi
respectively, for each i ∈

{1, 2, . . . , k}. Then u1 < w1 � ui in T for each i ∈ {2, . . . , k}.
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Proof We denote vaibi
, paibi

, xaibi
, yaibi

, zaibi
by vi, pi, xi, yi, zi respectively, for each i ∈

{1, 2, . . . , k}. We assume that α1(a, b) = left for each (a, b) ∈ MM(P, ν6, �). In particular,
α1(ai, bi) = left for each i ∈ {1, 2, . . . , k}.

By Claim 13 we have w1 � uk in T . Arguing by contradiction, suppose that w1 �� ui for
some i ∈ {2, . . . , k − 1}, and let i be the largest such index. Thus, w1 � ui+1 in T . Note
also that in this case we must have k � 3.

Since ui and ui+1 are comparable in T (by Claim 12) and u1 is minimal in T among all
the ui’s, we obtain u1 = ui < w1 � ui+1 in T .

Observe that ui � aT
i ∧bT

i+1 in T , as ui < {aT
i , bT

i+1} in T . If ui = aT
i ∧bT

i+1 then the path
from aT

i to bT
i+1 in T goes through ui . Thus, the relation ai � bi+1 hits B(ui) = {xi, yi, zi},

and it follows that ai � xi � bi+1 in P (as ai � yi and ai � zi). Since B(ui) = B(u1)

and φ(xi) = φ(x1) (because α5(a1, b1) = α5(ai, bi)), we deduce that xi = x1. But then
a1 � x1 = xi � bi+1 in P , which is a contradiction. (Recall that i � 2.)

If u1 = ui < aT
i ∧ bT

i+1 in T then we must have w1 � aT
i ∧ bT

i+1 in T , since aT
i ∧ bT

i+1
has to be an internal node of the path from ui to bT

i+1 in T and since w1 is the neighbor of
ui on that path (as ui < w1 � ui+1 < bT

i+1 in T ). In particular, this implies ui < w1 < aT
i

in T , and it follows that vi = w1. As aT
i is left of bT

i in T , and since vi = w1 < bT
1 in T ,

by Observation 9(ii) we obtain that bT
1 is left of bT

i , which contradicts the fact that (a1, b1)
is the root of {(ai, bi)}ki=1. This completes the proof.

Now let us define the function α6.

Note that yab always belongs to the intersection, and hence α6 tells us whether xab or
zab is the other element in B(uab) ∩ B(wab). If the answer to this question is “no”, then our
signature tree leads us to the second leaf of �, leaf ν7.

3.5 Second leaf of �: the node ν7

In this section we show that incomparable pairs in MM(P, ν7, �) are reversible for each
� ∈ �(ν7). Recall that MM(P, ν7) is a subset of MM(P, ν6), allowing us to use the obser-
vations and claims from the previous section. Moreover, for every pair (a, b) ∈ MM(P, ν7)

we have that α6(a, b) = no, implying that B(uab) ∩ B(wab) = {yab, zab}.

Claim 15 MM(P, ν7, �) is reversible for each � ∈ �(ν7).

Proof Let � ∈ �(ν7). We assume that α1(a, b) = left for each (a, b) ∈ MM(P, ν7, �). In
particular, α1(ai, bi) = left for each i ∈ {1, 2, . . . , k}.

Arguing by contradiction, suppose that there is a strict alternating cycle {(ai, bi)}ki=1
in MM(P, ν7, �) with root (a1, b1). We have u1 < w1 � u2 in T by Claim 14, and in
particular aT

1 ∧bT
2 = u1. Thus, the path from aT

1 to bT
2 in T includes the edge u1w1. Hence,

the relation a1 � b2 hits B(u1)∩B(w1) ⊆ {x1, y1, z1}. Since a1 � x1 and a1 ‖{y1, z1} in P

we obtain x1 ∈ B(u1)∩B(w1). Recalling that we also have y1 ∈ B(u1)∩B(w1), it follows
that B(u1) ∩ B(w1) = {x1, y1}, contradicting α6(a1, b1) = no.
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Fig. 7 A possible situation in the proof of Claim 16

3.6 Node ν8 and its function α8

Before we study strict alternating cycles in MM(P, ν8), let us recall some useful properties
of incomparable pairs in MM(P, ν8). Each pair (a, b) ∈ MM(P, ν8) satisfies

• α4(a, b) = no, and hence there is no q ∈ B(uab) ∩ B(pab) such that a � q in P ,
• the elements of B(uab) can be labeled with xab, yab, zab such that (2)–(7) hold,
• α6(a, b) = yes, and hence B(uab) ∩ B(wab) = {xab, yab}.
We proceed with an observation about MM(P, ν8, �) for fixed � ∈ �(ν8).

Claim 16 Let � ∈ �(ν8) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν8, �) with root (a1, b1). Let ui denote uaibi

for each i ∈ {1, 2, . . . , k}. Then u1 <

w1 � u2 < bT
1 in T .

Proof We denote waibi
, paibi

, xaibi
, yaibi

, zaibi
by wi, pi, xi, yi , zi respectively, for each

i ∈ {1, 2, . . . , k}. We assume that α1(a, b) = left for each (a, b) ∈ MM(P, ν8, �). In
particular, α1(ai, bi) = left for each i ∈ {1, 2, . . . , k}.

If k = 2 then the claim follows from Claim 13. So we assume k � 3 from now on. By
Claim 14 we already know u1 < w1 � u2 in T , and thus it remains to show u2 < bT

1 in T .
Arguing by contradiction suppose that u2 �< bT

1 in T . Let i ∈ {3, . . . , k} be smallest
such that ui � u2 in T . There is such an index since uk < bT

1 in T by Claim 13, and thus
uk � u2 in T . See Fig. 7 for an illustration of this and upcoming arguments.

By our choice of i, we have u1 < u2 � ui−1 in T . Note that ai−1 � bi in P , which
combined with α4(ai−1, bi−1) = no yields ui−1 < bT

i in T . Hence u2 � ui−1 < bT
i in T .

Since u2 < bT
i and ui < bT

i in T , the two nodes u2 and ui are comparable in T , and
thus ui < u2 since ui � u2 in T . Combining this with u2 < bT

i in T we further deduce
that wi � u2 in T . On the other hand, w1 � ui in T by Claim 14. To summarize, we have
u1 < w1 � ui < wi � u2 < bT

i in T .
Now consider the path from aT

1 to bT
2 in T . Since w1 < u2 � bT

2 and w1 � aT
1 in T ,

this path goes through u1, and thus includes the edge uiwi . Hence the relation a1 � b2 hits
the set B(ui) ∩ B(wi), the latter being equal to {xi, yi} since α6(ai, bi) = yes. Therefore,
a1 � xi � b2 or a1 � yi � b2 in P . But this implies ai � xi � b2 or a1 � yi � bi
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in P , a contradiction in both cases to the properties of a strict alternating cycle (recall that
i ∈ {3, . . . , k}).

Given � ∈ �(ν8), we say that pairs (a, b), (a′, b′) ∈ MM(P, ν8, �) form a special
2-cycle if, exchanging (a, b) and (a′, b′) if necessary, we have

(i) a � b′ and a′ � b in P , and
(ii) uab < wab � ua′b′ < wa′b′ < bT in T .

The first requirement is simply that (a, b), (a′, b′) is a (strict) alternating cycle. (Note that
every alternating cycle of length 2 is strict.) As a consequence of this and Claim 16, we
know that the first three inequalities of the second requirement are satisfied. So the question
here is whether also wa′b′ < bT holds in T . An implication of the second requirement is
that the paths from aT to b′T and from a′T to bT in T both go through the edge ua′b′wa′b′
of T . Note also that the pair (a, b) is the root this special 2-cycle.

Let S� be the graph with vertex set MM(P, ν8, �) where distinct pairs (a, b), (a′, b′) ∈
MM(P, ν8, �) are adjacent if and only if they form a special 2-cycle.

Claim 17 The graph S� is bipartite for each � ∈ �(ν8).

Proof Arguing by contradiction, suppose that there is an odd cycle C = {(ai, bi)}ki=1 in
S� for some � ∈ �(ν8). We may assume that C is induced. Let ui := uaibi

, wi := waibi
,

xi := xaibi
and yi := yaibi

for each i ∈ {1, . . . , k}.
First we consider the case k = 3. Since u1, u2, u3 are pairwise comparable in T , we

may assume that u1 < u3 < u2 in T (recall that consecutive ui’s are distinct by property
(ii) of special 2-cycles). By the definition of special 2-cycles, we then obtain u2 < w2 <

{bT
1 , bT

2 , bT
3 } in T . Thus the paths from aT

1 to bT
2 , from aT

2 to bT
3 , and from aT

3 to bT
1 in

T all go through the edge u2w2. This implies that two relations must hit the same element
and therefore there is i ∈ {1, 2, 3} and q ∈ B(u2) ∩ B(w2) such that ai � q � bi+1 and
ai+1 � q � bi+2 in P (indices are taken cyclically). However, this gives ai+1 � bi+1 in P ,
a contradiction.

Next consider the case k � 5. We will show that C has a chord, contradicting the fact
that C is induced. (We remark that the parity of k will not be used here, only that k � 5.)

We may suppose that u2 is maximal in T among all the ui’s. We may also assume without
loss of generality u1 � u3 < u2 in T . (Recall that by property (ii) of special 2-cycles ui

and ui+1 are comparable in T and distinct for each i ∈ {1, . . . , k}.) Let i, j be such that
{i, j} = {3, 4} and uj < ui in T . (Note that uj �= ui since (aj , bj ), (ai, bi) form a special
2-cycle.) We claim that

wj < wi � w2 andw1 � wi (8)

in T .
The inequality wj < wi follows from the fact that (aj , bj ) and (ai, bi) form a special

2-cycle, and thus in particular uj < wj � ui < wi in T . For the inequality wi � w2
we do a case distinction. If i = 3 then (a2, b2) and (ai, bi) form a special 2-cycle with
ui < wi � u2 < w2 in T . If i = 4 then (a2, b2), (a3, b3) as well as (a3, b3), (ai, bi) form
special 2-cycles. In particular, {w2, wi} < bT

3 in T . This makes w2 and wi comparable in T

and by the choice of u2 we have wi � w2, as desired. Besides this, we also have w1 < w2
in T (as (a1, b1), (a2, b2) form a special 2-cycle), which makes w1 and wi comparable in
T . Since we have u1 � ui by our choice of i and by the assumption that u1 � u3 in T , it
follows that w1 � wi in T and (8) is proven.
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Now, we are going to argue that the aT
1 –b

T
2 path, the a0–bT

1 path, the aT
j –b

T
i path, and

the aT
i –b

T
j path all go through the edge uiwi in T .

For the aT
1 –b

T
2 path note that u1 < w1 � wi � w2 < bT

2 in T . This implies that this path
has to go first from aT

1 down to u1 and then pursue with the u1–bT
2 path, which includes

wi by the previous inequalities, and thus also its parent ui (since u1 < wi in T ). Hence, it
includes the edge uiwi of T .

For the a0–bT
1 path it suffices to observe that r < ui < wi � w2 < bT

1 in T . Similarly,
for the aT

j –b
T
i path, notice that uj < wj � ui < wi < bT

i in T . Finally, for the aT
i –b

T
j

path, observe that ui < wi < bT
j in T .

Using Observation 10, it follows that the relations a1 � b2, a0 � b1, aj � bi and ai � bj

in P all hit B(ui) ∩ B(wi) = {xi, yi}. Clearly,
aj � yi � bi and ai � xi � bj

in P .
Now, in P we either have a0 � xi � b1 and a1 � yi � b2, or a0 � yi � b1 and

a1 � xi � b2. This implies ai � b1 and a1 � bi , or aj � b1 and a1 � bj .
In the first case, (a1, b1), (ai, bi) is an alternating cycle of length 2 (and thus is strict).

Recall that w2 < bT
1 in T , which together with (8) yields w1 � wi < bT

1 in T . Further-
more, applying Claim 14 on (a1, b1), (ai, bi) we obtain u1 �= ui , implying w1 �= wi , and
hence w1 < wi in T . It follows that u1 < w1 � ui < wi < bT

1 in T , which shows that
(a1, b1), (ai, bi) is a special 2-cycle. This gives us a chord of the cycle C, a contradiction.

In the second case, (a1, b1), (aj , bj ) is a (strict) alternating cycle. Moreover, w1 � wi

and wj � wi in T (see (8)), which makes w1 and wj comparable in T . Again by Claim 14
we get w1 �= wj . If w1 < wj then it also holds that u1 < w1 � uj < wj < bT

1 in T (as
wj � w2 < bT

1 ). If wj < w1 then it follows that uj < wj � u1 < w1 < bT
j in T (as

w1 � wi < bT
j ). Thus in both cases (a1, b1), (aj , bj ) is a special 2-cycle and a chord in C,

a contradiction. This completes the proof.

Using Claim 17, for each � ∈ �(ν8) let ψ8,� : MM(P, ν8, �) → {1, 2} be a (proper)
2-coloring of S� . The function α8 then simply records the color of a pair in this coloring:

3.7 Node ν9 and its function α9

By the definition of α8 there is no special 2-cycle in MM(P, ν9, �), for every � ∈ �(ν9).
This will be used in the definition of the function α9.

In order to define α9 we first need to introduce an auxiliary directed graph. For each
� ∈ �(ν9), let K� be the directed graph with vertex set MM(P, ν9, �) where for any two
distinct pairs (a1, b1), (a2, b2) ∈ MM(P, ν9, �) there is an arc from (a1, b1) to (a2, b2) in
K� if there exists a strict alternating cycle {(a′

i , b
′
i )}ki=1 in MM(P, ν9, �) with root (a′

1, b
′
1)

such that (a′
1, b

′
1) = (a1, b1) and (a′

2, b
′
2) = (a2, b2). In that case we say that the arc f

is induced by the strict alternating cycle {(a′
i , b

′
i )}ki=1. (Note that there could possibly be

different strict alternating cycles inducing the same arc f .)
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Claim 18 Let � ∈ �(ν9). Then for each arc ((a1, b1), (a2, b2)) in K� we have

(i) x1 � y2, and
(ii) y1 � z2 � b1

in P , where xi := xaibi
, yi := yaibi

, and zi := zaibi
for i = 1, 2.

Proof Let ui := uaibi
, pi := paibi

, and wi := waibi
for i = 1, 2. By the definition of an arc

in K� and by Claim 16 it holds that u1 < w1 � u2 < bT
1 in T . Thus, the path from aT

1 to
bT
2 in T goes through u1, w1, u2 and w2. Hence, the relation a1 � b2 (which exists by the

definition of an arc in K�) hits B(u1) ∩ B(w1) = {x1, y1} and B(u2) ∩ B(w2) = {x2, y2}.
It cannot hit y1 (otherwise a1 � y1 � b1 in P ) nor x2 (otherwise a2 � x2 � b2 in P ). It
follows that a1 � x1 � y2 � b2 in P by Observation 10, and 18 is proven.

For (ii) observe that the relation a0 � b1 hits {x1, y1} = B(u1) ∩ B(w1) and {y2, z2} =
B(p2)∩B(u2). It cannot hit x1 nor y2 since otherwise a1 � b1 in P as we have a1 � x1 � y2
in P . Hence we obtain a0 � y1 � z2 � b1 in P by Observation 10.

Let us remark that it is possible to strengthen the statement of Claim 18. In fact, strict
inequalities x1 < y2 and y1 < z2 hold in (i) and (ii), respectively. Indeed, since φ is
a proper coloring and α5(a1, b1) = α5(a2, b2), we have φ(x1) = φ(x2) �= φ(y2) and
φ(y1) = φ(y2) �= φ(z2), implying that x1 �= y2 and y1 �= z2. For our purposes the non-
strict inequalities of Claim 18 (and also in forthcoming claims) suffice. As we do not want
give more arguments than needed, we will not always prove the strongest possible statement
in the following.

Claim 19 Let � ∈ �(ν9). Suppose that (a1, b1), (a2, b2), (a3, b3) ∈ MM(P, ν9, �) are
three distinct pairs such that ((a1, b1), (a2, b2)) is an arc in K� and u1 < u3 < w3 � u2
in T , where ui := uaibi

and wi := waibi
for each i ∈ {1, 2, 3}. Then

(i) x1 � z3 � y2, and
(ii) y1 � y3 � z2 � b1

in P , where xi := xaibi
, yi := yaibi

, and zi := zaibi
for each i ∈ {1, 2, 3}.

Proof Let pi := paibi
for each i ∈ {1, 2, 3}. We have x1 � y2 and y1 � z2 � b1 in P

by Claim 18. Since u1 < u3 < w3 � u2 in T , the relations x1 � y2 and y1 � z2 hit
B(u3) ∩ B(w3) = {x3, y3}. They cannot hit the same element since otherwise a1 � x1 �
z2 � b1 in P .

If x1 � y3 � y2 in P then y1 � x3 � z2, and we conclude a1 � x1 � y3 � b3 and
a3 � x3 � z2 � b1 in P . Thus, (a1, b1) and (a3, b3) form an alternating cycle of length
2. Applying Claim 16 on the pairs (a1, b1), (a2, b2) we obtain in particular u2 < bT

1 in T .
Together with our assumptions it follows that both u3 and w3 lie on the path from u1 to bT

1
in T . Hence, u1 < w1 � u3 < w3 < bT

1 in T , and therefore (a1, b1), (a3, b3) is a special
2-cycle, contradicting the fact thatψ8,�(a1, b1) = α8(a1, b1) = α8(a3, b3) = ψ8,�(a3, b3).

We conclude that x1 � x3 � y2 and y1 � y3 � z2 in P . It remains to show that
x1 � z3 � y2 in P . For this, note that x1 � x3 hits B(p3) ∩ B(u3) = {y3, z3}. It cannot hit
y3 as otherwise a1 � x1 � y3 � z2 � b1 in P . This implies x1 � z3 � x3 � y2 in P , as
desired.

We are now ready to prove our main claim about K� (� ∈ �(ν9)), namely that K� is
bipartite. (We consider a directed graph to be bipartite if its underlying undirected graph is.)



208 Order (2017) 34:185–234

Claim 20 The graph K� is bipartite for each � ∈ �(ν9).

Proof Arguing by contradiction, suppose that there is an odd undirected cycle C =
{(ai, bi)}ki=1 in K� for some � ∈ �(ν9). Let ui := uaibi

, wi := waibi
, xi := xaibi

,
yi := yaibi

, and zi := zaibi
for each i ∈ {1, . . . , k}. We may assume that α1(ai, bi) = left

for each i ∈ {1, . . . , k}.
Consider the cyclic sequence of nodes (u1, u2, . . . , uk). It might be the case that some

of the nodes coincide. In order to avoid this, we modify the sequence as follows: If
ui = uj for some i, j ∈ {1, . . . , k} with i < j , then consider the two cyclic sequences
(ui, ui+1, . . . , uj−1) and (uj , uj+1, . . . , ui−1) (thus the second one contains uk , and also
u1 if i > 1). Since k is odd, exactly one of the two cyclic sequences has odd length. We
replace the original sequence by that one, and repeat this process as long as some node
appears at least twice in the current cyclic sequence.

We claim that at every stage of the above modification process the cyclic sequence
S = (ui1 , ui2 , . . . , ui� ) under consideration satisfies the following property: For every
s ∈ {1, . . . , �} there is an index j ∈ {1, . . . , k} such that uis = uj and uis+1 = uj+1 (tak-
ing indices cyclically in each case, as expected). This property obviously holds at the start,
so let us show that it remains true during the rest of the procedure. Thus suppose that the
current cyclic sequence S = (ui1 , ui2 , . . . , ui� ) satisfies the property, and that we modify it
because of two indices p, q ∈ {1, . . . , �} with p < q such that uip = uiq . Without loss of
generality we may assume that the resulting odd sequence is S′ = (uip , . . . , uiq−1). We only
need to show that there is an index j ∈ {1, . . . , k} such that uiq−1 = uj and uip = uj+1,
since uiq−1 and uip are the only two consecutive nodes in S′ that were not consecutive in S.
Then it suffices to take j ∈ {1, . . . , k} such that uiq−1 = uj and uiq = uj+1, which exists
since S satisfies our property, and observe that uip = uiq = uj+1. Therefore, the property
holds at every step, as claimed.

Recalling that any two consecutive nodes in the original cyclic sequence (u1, u2, . . . , uk)

are distinct and comparable in T (by Claim 16), it follows from the property considered
above that this holds at every step of the modification procedure, and thus in particular for
the final sequence S = (ui1 , ui2 , . . . , ui� ) resulting from the procedure. In particular, � � 3,
because the cycle has odd length.

Since � is odd, there exists m ∈ {1, . . . , �} such that uim−1 < uim < uim+1 or uim−1 >

uim > uim+1 in T . Reversing the ordering of C and the cyclic sequence S if necessary, we
may assume without loss of generality uim−1 < uim < uim+1 in T . Similarly, shifting the
sequence S cyclically if necessary, we may assume m = 1. Thus ui� < ui1 < ui2 in T .

Let w be the neighbor of ui1 on the ui1–ui2 path in T . Thus w � ui2 in T . Now let
n ∈ {3, . . . , �} be minimal such that w � uin in T . Since ui� < w in T , this index exists. As
uin−1 and uin are comparable in T , it follows that uin < w � uin−1 in T . (This follows from
the definition of n if n > 3, and from the fact that w � ui2 in T if n = 3.) Furthermore we
have uin �= ui1 , because n �= 1 and all nodes in S are distinct. We conclude that

uin < ui1 < w � uin−1 (9)

in T . Now, by the property that is maintained during the modification process of S, there
exist indices r, s, t ∈ {1, . . . , k} such that

ui� = ur and ui1 = ur+1, (10)

ui1 = us and ui2 = us+1, (11)

uin−1 = ut and uin = ut+1. (12)
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It follows that K� contains the following arcs: ((ar , br ), (ar+1, br+1)), ((as, bs), (as+1,

bs+1)), and ((at+1, bt+1), (at , bt )). Applying Claim 16 on these arcs we obtain:

ur < wr � ur+1 < bT
r , (13)

us < ws � us+1 < bT
s , (14)

ut+1 < wt+1 � ut < bT
t+1 (15)

in T . See Fig. 8 for a possible configuration in T and for upcoming arguments. Since ui1 =
us and ui2 = us+1 we have w = ws . Hence with (9) we get ut+1 < us < ws � ut in T ,
and by Claim 19 it follows that

xt+1 � zs � yt and yt+1 � ys � zt � bt+1

in P . Now applying Claim 18 on the arc ((ar , br ), (ar+1, br+1)) we get

xr � yr+1 and yr � zr+1 � br

in P . Since α5(ar+1, br+1) = α5(as, bs) and B(ur+1) = B(us) (because ur+1 = us), we
conclude that yr+1 = ys and zr+1 = zs . Using this and the derived inequalities we see that

at+1 � xt+1 � zs = zr+1 � br and ar � xr � yr+1 = ys � bt+1

in P . Thus, (ar , br ) and (at+1, bt+1) form an alternating cycle of length 2. In particular, this
shows r �= t + 1 (otherwise we would have ar � bt+1 = br in P ), and consequently (by
Claim 16)

ur �= ut+1. (16)

Observe that ur < ur+1 = ui1 (by (13) and (10)) and ut+1 = uin < ui1 (by (12) and (9)) in
T , which makes ur and ut+1 comparable in T . Furthermore,

ui1

(10)= ur+1
(13)
< bT

r and ui1

(9)
< uin−1

(12)= ut

(15)
< bT

t+1

in T , so all together we have

{ur, ut+1} < ui1 < {bT
r , bT

t+1}
in T . But from this and (16) it follows that either ur < wr � ut+1 < wt+1 � ui1 < bT

r

or ut+1 < wt+1 � ur < wr � ui1 < bT
t+1 holds in T . Both cases imply that (ar , br ) and

(at+1, bt+1) form a special 2-cycle, which is our final contradiction.

Using Claim 20 we let ψ9,� : MM(P, ν9, �) → {1, 2} be a 2-coloring of K� , for each
� ∈ �(ν9). The function α9 then records the color of a pair in this coloring:

3.8 Third leaf of �: ν10

Now suppose that there was a strict alternating cycle {(ai, bi)}ki=1 with root (a1, b1) in
MM(P, ν10, �), for some � ∈ �(ν10). Then, by the definition of K� , there is an arc from
(a1, b1) to (a2, b2) in K� , and hence α9(a1, b1) �= α9, a contradiction. Therefore, there is
no such cycle in MM(P, ν10, �), and we have established the following claim:

Claim 21 The setMM(P, ν10, �) is reversible for each � ∈ �(ν10).
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Fig. 8 Possible situation in proof of Claim 20. Note that we could also have ur < ut+1 in T

This concludes our study of the third leaf of �.

3.9 Node ν11 and its functions α11

In this section we consider pairs (a, b) ∈ MM(P, ν11). Recall that in this case (a, b)

satisfies α2(a, b) = yes and even stronger α4(a, b) = yes, and hence there is q ∈
B(uab) ∩ B(pab) such that a � q in P .

For every such pair (a, b), denote the three elements in B(uab) as xab, yab, zab in such a
way that

B(uab) ∩ B(pab) = {xab, yab} (17)

and

a � xab �� b; (18)

a �� yab � b (19)

in P . (Here we use that α4(a, b) = yes and that a0 � b hits B(uab) ∩ B(pab).)
The function α11 is defined similarly as α5 in Section 3.5:

(Recall that φ is the 3-coloring of X defined earlier on which is such that x, y ∈ X

receive distinct colors whenever V (Tx) ∩ V (Ty) �= ∅; in particular, the three colors
φ(xab), φ(yab), φ(zab) are distinct.)

3.10 Node ν12 and its functions α12

We start by defining function α12:
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(Recall that a0 < b in P for all b ∈ max(P )). Formally speaking, α12(a, b) is defined as
the vector (s1, s2, s3) ∈ {yes, no}3 where si is the answer to the i-th question above, for
i = 1, 2, 3. Note that we cannot have a � zab and zab � b at the same time in P , and thus
there are only 6 possible vectors of answers. (This is why the corresponding edge in the
signature tree � is labeled 6 instead of 8.)

3.11 Node ν13 and its functions α13: Dealing with strict alternating cycles
of length 2

Let us first summarize the properties of pairs in MM(P, ν13). For each � ∈ �(ν13) and
each (a, b) ∈ MM(P, ν13, �) we have that

• elements of B(uab) can be labeled with xab, yab, zab such that (17)–(19) hold,
• φ(xab), φ(yab), φ(zab) are pairwise distinct,
• φ(xab) = φ(xa′b′), φ(yab) = φ(ya′b′) and φ(zab) = φ(za′b′) for every (a′, b′) ∈

MM(P, ν13, �),
• all pairs of MM(P, ν13, �) produce the same answers to Q1–Q2.

For each � ∈ �(ν13) let J� be the graph with vertex set MM(P, ν13, �) where two
distinct pairs (a, b), (a′, b′) ∈ MM(P, ν13, �) are adjacent if and only if (a, b), (a′, b′) is
an alternating cycle. Our goal in this section is to show that J� is 4-colorable:

Lemma 22 For each � ∈ �(ν13) there is a proper coloring of J� with 4 colors.

To this aim, we show a number of properties of 2-cycles in MM(P, ν13, �).

Claim 23 Let � ∈ �(ν13) and suppose that (a1, b1), (a2, b2) is a 2-cycle in
MM(P, ν13, �). Let ui := uaibi

for i = 1, 2. Then u1 �= u2.

Proof Let xi := xaibi
, yi := yaibi

, and zi := zaibi
for i = 1, 2. We may assume α1(ai, bi) =

left for i = 1, 2. Arguing by contradiction suppose that u1 = u2. Exchanging (a1, b1) and
(a2, b2) if necessary we may assume that bT

1 is left of bT
2 in T .

Since in T the node aT
1 is left of bT

1 , which itself is left of bT
2 , the path connecting aT

1 to
bT
2 in T goes through u1. Thus, the relation a1 � b2 hits B(u1) = {x1, y1, z1} = B(u2) =

{x2, y2, z2}, and hence a1 � c � b2 in P for some element c ∈ B(u1). Recall that ai � xi

and ai � yi in P for i = 1, 2. Thus c ∈ {x1, z1}. Moreover, (φ(x1), φ(y1), φ(z1)) =
(φ(x2), φ(y2), φ(z2)) since α11(a1, b1) = α11(a2, b2), which implies x1 = x2, y1 = y2,
and z1 = z2.

If c = x1 then a2 � x2 = x1 � b2 in P , a contradiction. If c = z1 then, using that
a2 � z2 in P (since α12(a1, b1) = α12(a2, b2)), we obtain a2 � z2 = z1 � b2 in P , again a
contradiction.
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By Claim 23 if (a1, b1), (a2, b2) is a 2-cycle in MM(P, ν13, �) for some � ∈ �(ν13)

then ua1b1 �= ua2b2 . Let us say that the 2-cycle is of type 1 if the latter two nodes are
comparable in T (that is, ua1b1 < ua2b2 or ua1b1 > ua2b2 in T ), and of type 2 otherwise. By
extension, each edge of the graph J� is either of type 1 or of type 2. Let J�,i denote the
spanning subgraph of J� defined by the edges of type i, for i = 1, 2. Thus J�,1 and J�,2
are edge disjoint, and J� = J�,1 ∪ J�,2. In what follows we will first show that J�,1 is
bipartite, and then considering a 2-coloring of J�,1, we will prove that the two subgraphs
of J�,2 induced by the two color classes are bipartite. This clearly implies our main lemma,
Lemma 22, that J� is 4-colorable.

Claim 24 Let � ∈ �(ν13) and suppose that (a1, b1), (a2, b2) is a 2-cycle in
MM(P, ν13, �) of type 1. Let ui := uaibi

and wi := waibi
for i = 1, 2, and suppose further

that u1 < u2 in T . Then u1 < w1 � u2 in T .

Proof Arguing by contradiction, suppose that w1 � u2 in T . Let vi := vaibi
, pi := p(ui),

xi := xaibi
, yi := yaibi

, and zi := zaibi
for i = 1, 2.

First suppose that v1 � u2 in T . Then the path from aT
2 to bT

1 in T goes through u2, p2, v1
and u1. Thus the relation a2 � b1 hits B(u2) ∩ B(p2) = {x2, y2} and B(v1) ∩ B(u1). Note
that the two edges u2p2 and v1u1 may coincide (if u2 = v1). Since a2 � b1 cannot hit y2
because y2 � b2 in P , it hits x2, and by Observation 10 we then have

a2 � x2 � c � b1 (20)

in P for some c ∈ B(v1) ∩ B(u1). Let d be the element in (B(v1) ∩ B(u1)) \ {c}.
The aT

1 –u1 path and the r–bT
2 path in T both go through the edge v1u1. Thus, the relations

a1 � x1 and a0 � b2 both hit {c, d}. Neither can hit c since otherwise a1 � c � b1
or a2 � c � b2 in P . Hence, a1 � d � x1 and a0 � d � b2 in P , which implies
a0 � x1. We then have a0 � x2 in P as well, since by α12(a1, b1) = α12(a2, b2) both pairs
(a1, b1), (a2, b2) give the same answer to question Q3.

Clearly, a0 � x2 hits {c, d}. This relation cannot hit d since otherwise a1 � d � x2
and x2 � b1 (by (20)) would imply a1 � b1 in P . Thus a0 � c � x2 in P . Given that
x2 � c in P by (20), we conclude x2 = c. Using that x1 = c ∈ B(u1) = {x1, y1, z1}
and (φ(x1), φ(y1), φ(z1)) = (φ(x2), φ(y2), φ(z2)) (since α11(a1, b1) = α11(a2, b2)), we
further deduce that x1 �= y2 (because φ(x1) = φ(x2) �= φ(y2)) and x1 �= z2 (because
φ(x1) = φ(x2) �= φ(z2)) and therefore x2 = c = x1. However, this implies a1 � x1 =
x2 � b1 in P , a contradiction.

Next assume that v1 � u2 in T . Let v′
1 be the neighbor of u1 on the u1–u2 path in

T . Thus v′
1 �= w1 and v′

1 �= v1. The path from aT
2 to bT

1 in T goes through u2, p2, v
′
1

and u1. Thus, the relation a2 � b1 hits B(p2) ∩ B(u2) = {x2, y2} and B(v′
1) ∩ B(u1).

It cannot hit y2 since otherwise a2 � y2 � b2 in P . By Observation 10, we then
have

a2 � x2 � c′ � b1 (21)

for some c′ ∈ B(v′
1) ∩ B(u1). Let d ′ be the element in (B(v′

1) ∩ B(u1)) \ {c′}.
The paths from r to bT

2 and from aT
1 to bT

2 in T both go through u1 and v′
1. Thus the

two relations a0 � b2 and a1 � b2 hit the set {c′, d ′}. They cannot hit c′ since otherwise
we would get c′ � b2, implying a2 � c′ � b2 in P by (21). Hence, a0 � d ′ � b2 and
a1 � d ′ � b2 in P .

Observe that {c′, d ′} ⊆ {x1, y1, z1} = B(u1), and that we have c′ �= x1 (otherwise
a1 � x1 = c′ � b1 in P with (21)) and d ′ �= y1 (otherwise a1 � d ′ = y1 � b1 in P ).
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We claim that a0 � x1 in P . If d ′ = x1 this is obvious, so suppose that d ′ = z1, which
implies c′ = y1. The relation a0 � d ′ clearly hits B(p1) ∩ B(u1) = {x1, y1}. If it hits
x1, then a0 � x1 in P . If, on the other hand, it hits y1, then together with (21) we obtain
a2 � c′ = y1 � d ′ � b2 in P , a contradiction. Hence a0 � x1 in P , as claimed. We then
have a0 � x2 in P as well, since by α12(a1, b1) = α12(a2, b2) both pairs (a1, b1), (a2, b2)

give the same answer to question Q3.
The relation a0 � x2 also hits {c′, d ′}. It cannot hit d ′, since otherwise a1 � d ′ � x2 � b1

in P by (21). Thus we have a0 � c′ � x2 in P . Note that this yields c′ = x2, since we had
x2 � c′ in P . Using that c′ ∈ B(u1) and (φ(x1), φ(y1), φ(z1)) = (φ(x2), φ(y2), φ(z2))

(since α11(a1, b1) = α11(a2, b2)), we deduce that x2 = c′ = x1. However, this implies
a1 � x1 = x2 � b1 in P , a contradiction.

Claim 25 Let � ∈ �(ν13) and suppose that (a1, b1), (a2, b2) is a 2-cycle in
MM(P, ν13, �) of type 1. Let ui := uaibi

, xi := xaibi
, and yi := yaibi

for i = 1, 2, and
suppose further that u1 < u2 in T . Then

(i) a1 � y2, and
(ii) x2 � b1

in P .

Proof Let pi := p(ui), vi := vaibi
and wi := waibi

for i = 1, 2. The path from aT
1 to bT

2
in T has to go through u1 since u1 = p(w1), w1 �< aT

1 and w1 � u2 < bT
2 in T (by Claim

24). As a consequence, this path goes through p2 and u2. Hence the relation a1 � b2 hits
B(p2) ∩ B(u2) = {x2, y2}. It cannot hit x2, since otherwise a2 � x2 � b2 in P . Therefore,
it hits y2, showing (i).

To show (ii), observe that in T at least one of the r–bT
1 path and the aT

2 –b
T
1 path goes

through p2 and u2. Thus, at least one of the two relations a0 � b1 and a2 � b1 hits {x2, y2}.
Neither can hit y2 since otherwise a1 � y2 � b1 in P . Therefore, x2 � b1 in P .

Claim 26 The graph J�,1 is triangle-free for each � ∈ �(ν13).

Proof Let � ∈ �(ν13). Arguing by contradiction, suppose that there is a triangle
(a1, b1), (a2, b2), (a3, b3) in J�,1.

Let ui := uaibi
, pi := p(ui), wi := waibi

, xi := xaibi
, and yi := yaibi

for each
i ∈ {1, 2, 3}. Since the nodes u1, u2, u3 are pairwise comparable in T and are all distinct
(by Claim 23), we may assume without loss of generality u1 < u2 < u3 in T .

First we show that a0 � xi holds in P for some i ∈ {1, 2, 3}. Suppose this is not the case.
Consider the path from r to bT

3 in T . This path goes through the nodes p1, u1, p2, u2, p3
and u3. Hence, the relation a0 � b3 hits {x1, y1}, {x2, y2} and {x3, y3}. By our assumption
it hits yi for each i ∈ {1, 2, 3}, and we have a0 � y1 � y2 � y3 in P by Observation 10.

If u2 � bT
1 in T then a0 � b1 hits {x2, y2}, and thus hits y2 by our assumption. Hence

y2 � b1 in P , which using Claim 25(i) implies a1 � y2 � b1 in P , a contradiction.
Therefore, u2 ‖ bT

1 in T .
The fact that u1 < u2 < u3 in T further implies

u1 < w1 � u2 < w2 � u3

by Claim 24. Observe that the aT
1 –b

T
2 path, the aT

2 –b
T
3 path, and the aT

3 –b
T
1 path in T all

include the edge u2w2. This is clear for the first two paths, and follows from u2 ‖ bT
1 in T for
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the third one. Thus the three relations a1 � b2, a2 � b3, a3 � b1 all hit B(u2) ∩ B(w2) =:
{c, d}. Without loss of generality we have a1 � c � b2 in P . This implies a2 � d � b3
in P , which in turn implies a3 � c � b1. However, it follows that a1 � c � b1 in P , a
contradiction.

This shows that a0 � xi holds in P for some i ∈ {1, 2, 3}, as claimed. Now, since
α12(a1, b1) = α12(a2, b2) = α12(a3, b3), it follows that a0 � xi in P for each i ∈ {1, 2, 3}.

Consider the relation a0 � x3 in P . The path from r to u3 in T goes through p2 and
u2. Thus, a0 � x3 hits {x2, y2}. It cannot hit x2 because otherwise a2 � x2 � x3 in P ,
which together with x3 � b2 (by Claim 25(i)) implies a2 � x3 � b2 in P . Hence a0 � x3
hits y2, and we have y2 � x3 in P . On the other hand, by Claim 25 we have a1 � y2 and
x3 � b1 in P . It follows that a1 � y2 � x3 � b1 in P , a contradiction. This concludes the
proof.

Claim 27 Let � ∈ �(ν13). Suppose that (a1, b1), (a2, b2), (a3, b3) ∈ MM(P, ν13, �) are
three distinct pairs such that (a1, b1), (a2, b2) form a 2-cycle of type 1 and (a1, b1), (a3, b3)

do not form a 2-cycle (so neither of type 1 nor of type 2).
Let ui := uaibi

, xi := xaibi
, and yi := yaibi

for each i ∈ {1, 2, 3}. Assume further that
u1 < u3 � u2 in T . Then

(i) a1 � x3, and
(ii) y1 � y3 � b1

in P .

Proof Let pi := p(ui) and wi := waibi
for each i ∈ {1, 2, 3}. Since u1 < u3 � u2 in T and

also u1 < w1 � u2 in T by Claim 24, it follows that

u1 < w1 � u3 � u2

in T .
First suppose that u3 � bT

1 in T . Then the relation y1 � b1 hitsB(p3)∩B(u3) = {x3, y3}.
By Claim 25(i) we have a1 � y2 in P . Furthermore, a1 � y2 also hits {x3, y3}. Clearly, y1 �
b1 and a1 � y2 cannot hit the same element of {x3, y3}. If y1 � x3 � b1 then a1 � y3 � y2
in P , which implies a3 � x3 � b1 and a1 � y3 � b3, that is, that (a1, b1), (a3, b3) is a
2-cycle, a contradiction. Hence we have y1 � y3 � b1 and a1 � x3 � y2 in P , as claimed.

Next assume that u3 � bT
1 in T . Then the path from aT

2 to bT
1 in T includes the

edge u3p3, and hence a2 � b1 hits B(p3) ∩ B(u3) = {x3, y3}. The relation a1 �
b2 also hits {x3, y3}. Clearly, a2 � b1 and a1 � b2 cannot hit the same element
of {x3, y3}.

If a2 � x3 � b1 in P then a1 � y3 � b2. However, it then follows a3 � x3 � b1 and
a1 � y3 � b3 in P , implying that (a1, b1), (a3, b3) is a 2-cycle, a contradiction.

Therefore, a2 � y3 � b1 and a1 � x3 � b2 in P . In order to conclude the proof, it only
remains to show that y1 � y3 in P . For this, observe that the path from r to u3 in T includes
the edge p1u1. Hence, the relation a0 � y3 hits {x1, y1}. It cannot hit x1 since otherwise
a1 � x1 � y3 � b1. Thus, a0 � y1 � y3 in P , as desired.

An illustration for the next two claims is given on Fig. 9.

Claim 28 Let � ∈ �(ν13). Suppose that (a1, b1), (a2, b2), (a3, b3), (a4, b4) ∈
MM(P, ν13, �) are four distinct pairs such that u1 < u4 < u2 and u3 < u4 in
T , where ui := uaibi

for each i ∈ {1, 2, 3, 4}. Assume further that (a1, b1), (a2, b2)
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Fig. 9 Possible situations in Claim 28 and 29. An edge indicates that its endpoints correspond to the meeting
points of a 2-cycle

and (a3, b3), (a4, b4) are 2-cycles (which are thus of type 1). Then at least one of
(a1, b1), (a3, b3) and (a1, b1), (a4, b4) is a 2-cycle of type 1.

Proof Let xi := xaibi
and yi := yaibi

for each i ∈ {1, 2, 3, 4}. Suppose that
(a1, b1), (a4, b4) is not a 2-cycle, since otherwise we are done. Applying Claim 27 on the
three pairs (a1, b1), (a2, b2), (a4, b4) we obtain that a1 � x4 and y1 � y4 � b1 in P .

Using Claim 25 on the 2-cycle (a3, b3), (a4, b4) we also obtain a3 � y4 and x4 � b3 in
P . It follows that a3 � y4 � b1 and a1 � x4 � b3 in P . Hence (a1, b1), (a3, b3) is a 2-
cycle. Furthermore, it is of type 1 because u1 < u4 and u3 < u4 in T , implying that u1 and
u3 are comparable in T .

Claim 29 Let � ∈ �(ν13). Suppose that (a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5) ∈
MM(P, ν13, �) are five distinct pairs such that u1 < u5 < u4 and u2 < u5 < u3
in T , where ui := uaibi

for each i ∈ {1, . . . , 5}. Assume further that (a1, b1), (a2, b2)

and (a2, b2), (a3, b3) and (a1, b1), (a4, b4) are 2-cycles of type 1. Then at least one of
(a1, b1), (a5, b5) and (a2, b2), (a5, b5) is a 2-cycle of type 1.

Proof Assume to the contrary that neither (a1, b1), (a5, b5) nor (a2, b2), (a5, b5) is a 2-
cycle. (Note that if one is a 2-cycle, then it is automatically of type 1 since u1 < u5 and
u2 < u5 in T .) We either have u1 < u2 or u2 < u1 in T . Exploiting symmetry we may
assume u1 < u2 in T . (Indeed, if not then it suffices to exchange (a1, b1) and (a4, b4) with
respectively (a2, b2) and (a3, b3).)

Applying Claim 27 on the three pairs (a1, b1), (a4, b4), (a5, b5) and on the three pairs
(a2, b2), (a3, b3), (a5, b5), we obtain y5 � b1 and y2 � y5 in P . Since (a1, b1), (a2, b2) is a
2-cycle and u1 < u2 in T , we have a1 � y2 in P by Claim 25. But all together this implies
a1 � y2 � y5 � b1 in P , a contradiction.

Claim 30 The graph J�,1 is bipartite for every � ∈ �(ν13).
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Fig. 10 Example for Claim 30: Cycle C on the pairs (a1, b1), . . . , (a7, b7) and the positions of u1, . . . , u7
in T . Given this, it follows that u{12,23} = u2 is maximal in T among u{12,23}, u{54,43}, u{71,12}. Following
the proof for Claim 30 we would get that one of the dotted edges in the figure must be a real edge in J�,1,
implying that C cannot be induced

Proof Let � ∈ �(ν13). Arguing by contradiction, suppose that J�,1 is not bipartite. Let C
be a shortest odd cycle in J�,1. Thus C is induced, that is, C has no chord. By Claim 26 we
know that C has length at least 5.

We orient the edges of J�,1 in the following natural way: For each edge {(a, b), (a′, b′)}
in J�,1, we orient the edge towards (a′, b′) if uab < ua′b′ in T , and towards (a, b) otherwise
(that is, if uab > ua′b′ in T ). We encourage the reader to take a look at Fig. 10 for upcoming
new notations and arguments.

Let E be the set of all pairs of consecutive edges inC such that the source of one coincides
with the target of the other. Since C has an odd length, we have |E | � 1. For every {e, e′} ∈
E consider the pair (a, b) ∈ MM(P, ν13, �) which is the common endpoint of e and e′ in
J�,1, and let u{e,e′} := uab.

Choose {e, e′} ∈ E such that u{e,e′} is maximal in T , that is, u{e,e′} �< u{f,f ′} in
T for all {f, f ′} ∈ E . Exchanging e and e′ if necessary we may assume that the tar-
get of e coincides with the source of e′. Enumerate the vertices of the odd cycle C

as (a1, b1), (a2, b2), . . . , (ak, bk) in such a way that e = {(a1, b1), (a2, b2)} and e′ =
{(a2, b2), (a3, b3)}. Let ui := uaibi

, xi := xaibi
, yi := yaibi

, and zi := zaibi
for each

i ∈ {1, 2, . . . , k}. Thus u1 < u2 < u3 in T and u2 = u{e,e′}.
Let i be the largest index in {3, . . . , k} such that u2 < uj for all j ∈ {3, . . . , i} in T .

If there is an index j ∈ {3, . . . , i} such that uj−1 < uj < uj+1 or uj−1 > uj > uj+1 in
T (taking indices cyclically), then u{e,e′} = u2 < uj in T , which contradicts our choice of
{e, e′} in E (since {{(aj−1, bj−1), (aj , bj )}, {(aj , bj ), (aj+1, bj+1)}} was a better choice).
Thus no such index j exists. Given that u2 < u3 in T , it follows that

{uj−1, uj+1} < uj

in T for each odd index j ∈ {3, . . . , i}, and that i is odd (because ui+1 < ui in T by the
choice of i).

Since u2 < ui and ui+1 < ui in T , the two nodes u2 and ui+1 are comparable in T . By
our choice of i we have u2 �< ui+1 in T . (This is clear if i < k, and if i = k this follows
from the fact that uk+1 = u1 < u2 in T .) It follows that ui+1 � u2 in T . We claim that

ui+1 < u2
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in T . So suppose ui+1 = u2. Observe that i �= k (as otherwise ui+1 = u1 < u2 in
T ) and i �= k − 1 (since i and k are odd) in this case. Thus, 3 � i � k − 2 and
since the odd cycle C is induced, it follows that the two pairs (a1, b1), (ai+1, bi+1) do
not form a 2-cycle. (For if they did, it would be a 2-cycle of type 1 since u1 < u2 =
ui+1 in T , which would give a chord of C in J�,1.) Applying Claim 27 on the pairs
(a1, b1), (a2, b2) and (ai+1, bi+1) we obtain a1 � xi+1 in P . Using Claim 25 on (a1, b1)

and (a2, b2) gives us x2 � b1 in P . However, since u2 = ui+1 and (φ(x2), φ(y2), φ(z2)) =
(φ(xi+1), φ(yi+1), φ(zi+1)) (given that α11(a2, b2) = α11(ai+1, bi+1)), we deduce x2 =
xi+1, which implies a1 � xi+1 = x2 � b1 in P , a contradiction. Therefore, ui+1 < u2 in T ,
as claimed.

In order to finish the proof, we consider separately the case i < k and i = k. First suppose
that i < k, and thus i � k − 2. Since ui+1 < u2 < ui and u1 < u2 in T , using Claim 28 on
the four pairs (ai+1, bi+1), (ai, bi), (a1, b1), (a2, b2) we obtain that {(ai+1, bi+1), (a1, b1)}
or {(ai+1, bi+1), (a2, b2)} is an edge in J�,1, showing that C has a chord, a contradiction.

Next assume that i = k. Recall that {uj−1, uj+1} < uj in T for each odd index
j ∈ {3, . . . , k}. It follows that uj−1 and uj+1 are comparable in T for each such index
j . Using Observation 8 and k � 5 we deduce in particular that there exists an even index
� ∈ {4, . . . , k − 1} such that u� � u�′ for every even index �′ ∈ {4, . . . , k − 1}.

By the choice of � we have u� < u3 in T (since u� � u4 < u3) and u� < uk in T

(since u� � uk−1 < uk). Note also that u1 < u2 < u� in T , since i = k. Applying Claim
29 on the five pairs (a1, b1), (a2, b2), (a3, b3), (ak, bk) and (a�, b�), we then obtain that
{(a1, b1), (a�, b�)} or {(a2, b2), (a�, b�)} is an edge in J�,1, showing that C has a chord, a
contradiction.

Now that the bipartiteness of J�,1 is established for each � ∈ �(ν13), to finish our proof
of Lemma 22 (asserting that J� is 4-colorable), it remains to show that the two subgraphs
of J�,2 induced by the two color classes in a 2-coloring of J�,1 are bipartite. Clearly, it
is enough to show that every subgraph of J�,2 induced by an independent set of J�,1 is
bipartite, which is exactly what we will do. (Recall that an independent set, also known as
stable set, is a set of pairwise non-adjacent vertices.)

To this aim we introduce a new definition: Given a pair (a, b) ∈ MM(P ) and a set {c, d}
of two elements of P , we say that (a, b) is connected to {c, d} if a � c and d � b, or
a � d and c � b in P . Note that if (a, b) is connected to {c, d}, then it is in exactly one of
two possible ways (that is, either a � c and d � b, or a � d and c � b in P ). Thus two
pairs (a, b), (a′, b′) ∈ MM(P ) connected to {c, d} are either connected the same way, or in
opposite ways. More generally, we can consider how a collection of pairs are connected to
a certain set {c, d}, which we will need to do in what follows.

Observation 31 Let � ∈ �(ν13). Let I be an independent set in J�,1 and let c, d be two
distinct elements of P . Suppose that (a, b), (a′, b′) ∈ I are two pairs that are connected to
{c, d} in opposite ways. By definition a � c � b′ and a′ � d � b, or a � d � b′ and
a′ � c � b in P . Thus in both cases (a, b), (a′, b′) is a 2-cycle, which must be of type 2 as
(a, b) and (a′, b′) are non-adjacent in J�,1. In particular, (a, b) and (a′, b′) are adjacent
in J�,2.

Observation 32 Let � ∈ �(ν13). Let I be an independent set in J�,1 and let c, d be two
distinct elements of P . Suppose that (a, b), (a′, b′) ∈ I are adjacent in J�,2 and that the
two relations a � b′ and a′ � b both hit {c, d}. Then (a, b), (a′, b′) are connected to {c, d}
in opposite ways.
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Claim 33 Let � ∈ �(ν13). Let I be an independent set in J�,1 and let c, d be two distinct
elements of P . Suppose that C is an induced odd cycle in the subgraph of J�,2 induced by
I . If four of the pairs composing C are connected to {c, d} then they all are connected to
{c, d} the same way.

Proof Suppose that (a1, b1), . . . , (a4, b4) are four pairs from C that are connected to {c, d}.
(Note that these pairs are not necessarily consecutive in C.) If three of these pairs are con-
nected to {c, d} the same way and the fourth the other way, then by Observation 31 the
fourth pair is adjacent to the first three in J�,2, which is not possible since the odd cycle C

is induced.
It follows that if (a1, b1), . . . , (a4, b4) are not connected to {c, d} the sameway, then with-

out loss of generality (a1, b1), (a2, b2) are connected to {c, d} one way and (a3, b3), (a4, b4)

the other. We then deduce from Observation 31 that (a1, b1), (a3, b3), (a2, b2), (a4, b4) is
a cycle of length 4 in J�,2, a contradiction to the properties of C. Therefore, all four pairs
must be connected to {c, d} the same way.

Claim 34 Let � ∈ �(ν13) and let I be an independent set in J�,1. Then the subgraph of
J�,2 induced by I is bipartite.

Proof Arguingbycontradiction, suppose there is anoddcycle in the subgraphofJ�,2 induced
by I , and letC be a shortest one.Enumerate the vertices ofC as (a1, b1), (a2, b2), . . . , (ak, bk)

in order. Let ui := uaibi
and si := ui ∧ ui+1 for each i ∈ {1, . . . , k} (cyclically). Recall

that by the definition of J�,2 the pairs (ai, bi) and (ai+1, bi+1) form a 2-cycle of type 2 for
each i, and thus ui ‖ ui+1 in T , implying that si < {ui, ui+1} in T .

Let us start by pointing out the following consequence of Observation 32: If i ∈
{1, . . . , k} and {c, d} are such that the ui–ui+1 path in T includes an edge e of T for which
the intersection of the two bags of its endpoints is {c, d}, then (ai, bi) and (ai+1, bi+1) are
connected to {c, d} in opposite ways. This will be used a number of times in the proof.

Let j ∈ {1, . . . , k} be such that sj is maximal in T among s1, . . . , sk , that is, such that
sj �< si in T for each i ∈ {1, . . . , k}. Furthermore, if sj �= ui then we let si

j be the neighbor
of sj on the sj–ui path in T , for each i ∈ {1, . . . , k}. (Let us remark that we only make use

of the notion si
j when sj �= ui). Thus in particular sj < {sj

j , s
j+1
j } in T . See Fig. 11 for an

illustration of this definition.
We claim that

B(sj ) ∩ B(ss
j ) �= B(sj ) ∩ B(st

j )

for any s, t ∈ {1, . . . , k}with s < t such that sj < {ss
j , s

t
j } in T . Suppose to the contrary that

B(sj ) ∩ B(ss
j ) = B(sj ) ∩ B(st

j ) =: {c, d}. It follows from our choice of index j that both
the us−1–us path and the us–us+1 path in T include the edge sj s

s
j (otherwise sj < ss in T ),

and similarly that the ut–ut+1 path in T includes the edge sj s
t
j (otherwise sj < st in T ). As

a consequence we have that edge sj s
s
j is included in the aT

s−1–b
T
s path (as it passes through

us−1 and us), the aT
s –b

T
s−1 path, the aT

s –b
T
s+1 path and the aT

s+1–b
T
s path, and similarly

that edge sj s
t
j is included in the aT

t –b
T
t+1 path and the aT

t+1–b
T
t path. Therefore, the pairs

(as−1, bs−1), (as, bs), (as+1, bs+1), (at , bt ), and (at+1, bt+1) are all connected to {c, d}.
Furthermore, (as−1, bs−1) and (as, bs) are connected in opposite ways, and the same holds
for (as, bs) and (as+1, bs+1), as well as for (at , bt ) and (at+1, bt+1). There cannot be four
distinct pairs among these five, because otherwise this would contradict Claim 33. Hence
the only possibility is that k = 3 and s = t −1, and thus s −1 and t +1 are the same indices
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cyclically. But then recall that the u1–u2 path, the u2–u3 path and the u3–u1 path all have
to use edge sj s

s
j or sj s

t
j in T . As a consequence, the three relations a3 � b1, a1 � b2 and

a2 � b3 all hit {c, d}. Hence two of them hit the same element, which implies ai � bi for
some i ∈ {1, 2, 3}. With this contradiction, we have proved B(sj )∩B(ss

j ) �= B(sj )∩B(st
j ).

Since B(sj ) ∩ B(si
j ) is a 2-element subset of B(sj ) for each i such that sj �= ui , it

directly follows that there are at most three indices i such that sj < si
j in T (recall that this

inequality holds for i = j and i = j + 1).
This allows us to quickly dispense with the k � 5 case now: If uj−1 > sj in T (and

hence s
j−1
j > sj in T ), then let (s, t) := (j − 1, j + 1). Else, if uj+2 > sj in T , then let

(s, t) := (j, j + 2). If neither of the two cases is true, we let (s, t) := (j, j + 1). We claim
that in all three cases we obtain that

• sj < {ss
j , s

t
j } in T ,

• the two indices s − 1 and t + 1 are not the same (cyclically), and
• ss−1

j = st+1
j = p(sj ).

The first two items are obvious, and the third one follows from our last observation and
because sj �= us−1 and sj �= ut+1 (recall that us−1 ‖ us and ut ‖ ut+1 in T ).

Then, the us−1–us path and the ut–ut+1 path in T both include the edge p(sj )sj . It
follows that (as−1, bs−1) and (as, bs) are connected to B(sj ) ∩ B(p(sj )) in opposite ways,
and that the same holds for (at , bt ) and (at+1, bt+1). Since these four pairs are distinct, this
contradicts Claim 33 and concludes the case k � 5.

It remains to consider the k = 3 case. Reordering the pairs of C if necessary we may
assume j = 1 andB(s1) = {c, d, e}withB(s1)∩B(s11 ) = {c, d} andB(s1)∩B(s21 ) = {d, e}.
The two relations a1 � b2 and a2 � b1 both hit {c, d} and {d, e}, and clearly they cannot
hit the same element. Thus, one of the relations hits d , and the other c and e. Exploiting
symmetry again, we may assume without loss of generality that a2 � b1 hits d. (Indeed, if
not then this can be achieved by reversing the ordering of the pairs of C.) Thus we have

a2 � d � b1

in P , which then implies

a1 � c � e � b2

Fig. 11 Illustration for Claim 34 with j = 2
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in P by Observation 10. Now, the two relations a2 � b3 and a3 � b1 both hit B(s1) =
{c, d, e}. (Here we use that s1 �< {s2, s3} in T .) Neither hit c or e since this would contradict
a1 � c � e � b2 in P . Hence both relations hit d, which implies a3 � d � b3 in P , a
contradiction.

This concludes the proof of Lemma 22, asserting that J� is 4-colorable for each � ∈
�(ν13). Now, for each � ∈ �(ν13) let ψ13,� be such a coloring. Then we define α13 as
follows:

3.12 Node ν14 and its function α14: Dealing with strict alternating cycles
of length at least 3

Recall that compared to MM(P, ν14, �), pairs in MM(P, ν14, �) have the additional prop-
erty that they do not form a 2-cycle with another pair of MM(P, ν14, �), thanks to function
α13. Therefore, strict alternating cycles in MM(P, ν14, �) (� ∈ �(ν14)) have length at least
3. We will now list (and prove) a number of properties satisfied by these alternating cycles.

First we prove a claim that bears some similarity with Claim 12.

Claim 35 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �). Let ui denote uaibi

for each i ∈ {1, 2, . . . , k}. Then there is an index
j ∈ {1, 2, . . . , k} such that uj � ui in T for each i ∈ {1, 2, . . . , k}.

Proof We denote waibi
, paibi

, xaibi
, yaibi

, zaibi
by wi, pi, xi, yi , zi respectively, for each

i ∈ {1, 2, . . . , k}. We may assume α1(ai, bi) = left.
Consider the nodes u1, . . . , uk and let j ∈ {1, 2, . . . , k} be such that uj is minimal in T

among these. We will show that uj � ui in T for each i ∈ {1, 2, . . . , k}. This can equiva-
lently be rephrased as follows: Every element ui which is minimal in T among u1, . . . , uk

satisfies ui = uj (note that we could possibly have ui = uj for i �= j ). Arguing by con-
tradiction, let us assume that there is an element minimal in T among u1, . . . , uk which is
distinct from uj .

We start by showing that under this assumption u1, . . . , uk are all pairwise incomparable
in T (and thus are in particular all distinct). Once this is established, we will then be able to
derive the desired contradiction.

Of course, to prove that u1, . . . , uk are pairwise incomparable in T it is enough to show
that ui ‖ uj in T for each i ∈ {1, 2, . . . , k} with i �= j , since uj was chosen as an arbitrary
minimal element in T among u1, . . . , uk . Assume not, that is, that there is an index i ∈
{1, 2, . . . , k} with i �= j such that uj � ui in T . We may choose i in such a way that
we additionally have ui−1 ‖ uj or ui+1 ‖ uj in T . As the arguments for the two cases are
analogous we consider only the case ui−1 ‖ uj in T .

We have aT
i−1 �� uj since ui−1 ‖ uj in T , and we also have uj � ui < bT

i in T . It
follows that the path from aT

i−1 to bT
i in T goes through the edge pjuj . Thus, the relation

ai−1 � bi hits B(pj ) ∩ B(uj ) = {xj , yj }. But then ai−1 � xj � bi or ai−1 � yj �
bi in P , which implies aj � xj � bi or ai−1 � yj � bj . Since we have i �= j + 1
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(as ui−1 ‖ uj in T ) and j �= i, this contradicts the assumption that our alternating cycle
(a1, b1), (a2, b2), . . . , (ak, bk) is strict.

We conclude that u1, . . . , uk are all pairwise incomparable in T , as claimed.
Let si := ui ∧ ui+1 for each i ∈ {1, 2, . . . , k} (indices are taken cyclically, as always).

Note that the path from aT
i to bT

i+1 in T has to go through si . Choose i ∈ {1, . . . , k} such
that si is maximal among s1, . . . , sk in T . The nodes si−1 and si are comparable in T , since
si−1 � ui and si � ui in T . Thus we have si−1 � si in T . Similarly, si+1 � si in T .

Let us first look at the case si−1 = si . This implies si � {ui−1, ui, ui+1} in T . Now the
aT
i−1–b

T
i path, the aT

i –b
T
i+1 path, and the aT

i+1–b
T
i+2 path in T all go through si in T . This

means that the relations ai−1 � bi , ai � bi+1 and ai+1 � bi+2 all hit B(si). Clearly, no two
of them can hit the same element (recall that k � 3 and that our alternating cycle is strict),
and hence each element of B(si) is hit by exactly one of these three relations. On the other
hand, the three paths from r to bT

i−1, b
T
i and bT

i+1 in T all go through p(si) and si , implying
that the relations a0 � bi−1, a0 � bi , and a0 � bi+1 all hit B(p(si)) ∩ B(si). In particular,
some element inB(si) is hit by at least two of these three relations. But with the observations
made before, it follows that some element in {ai−1, ai, ai+1} is below two elements of
{bi−1, bi , bi+1} in P , which is not possible in a strict alternating cycle. Therefore, si−1 �= si .

Thus we have si−1 < si in T , and with a similar argument one also deduces that si+1 < si
in T .

To conclude the proof, consider the aT
i−1–b

T
i path, the aT

i+1–b
T
i+2 path, and the r–bT

i+1
path in T . They all go through the edge p(si)si of T , and hence the corresponding relations
in P all hit B(p(si)) ∩ B(si). Therefore, two of these relations hit the same element in that
set, which again contradicts the fact that our alternating cycle is strict.

By Claim 35 we are in a situation similar to that first encountered in Section 3.5,
namely for each � ∈ �(ν14) each alternating cycle in MM(P, ν14, �) can be written as
{(ai, bi)}ki=1 in such a way that ua1b1 � uaibi

in T for each i ∈ {1, . . . , k}. We may further
assume that the pair (a1, b1) is such that bT

1 is to the right of bT
i in T if aT

1 is to the left of
bT
1 in T , and to the left of bT

i otherwise, for each i ∈ {2, . . . , k} such that ua1b1 = uaibi
. As

before the pair (a1, b1) is uniquely defined, and we call it the root of the alternating cycle.
Our next claim mirrors Claim 14 from Section 3.5.

Claim 36 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui, wi denote uaibi

, waibi
respectively, for each i ∈

{1, 2, . . . , k}. Then u1 < w1 � ui in T for each i ∈ {2, . . . , k}.
Proof We denote paibi

, xaibi
, yaibi

, zaibi
by pi, xi, yi, zi respectively, for each i ∈

{1, 2, . . . , k}. We may assume α1(ai, bi) = left for each i ∈ {1, 2, . . . , k}.
First we will show that u1 < w1 � uk in T . To do so suppose first that u1 = uk .

Then w1 �� aT
k in T , as otherwise we would have bT

k to the right of bT
1 in T (Observa-

tion 9), which contradicts the choice of (a1, b1) as the root of the strict alternating cycle.
In particular, the path from aT

k to bT
1 in T goes through u1. Hence the relation ak � b1

hits B(u1) = {x1, y1, z1}; let q ∈ B(u1) be such that ak � q � b1 in P . Clearly,
q ∈ {y1, z1}. Given that u1 = uk and (φ(x1), φ(y1), φ(z1)) = (φ(xk), φ(yk), φ(zk))

(since α11(a1, b1) = α11(ak, bk)), we obviously have x1 = xk , y1 = yk , and z1 = zk . If
q = y1 = yk then we directly obtain q � bk in P . If q = z1 = zk then we also deduce
q � bk in P , because α12(a1, b1) = α12(ak, bk), and thus in particular zk � bk in P since
z1 � b1. Hence in both cases q � bk in P . This implies ak � q � bk in P , a contradiction.
Therefore, u1 �= uk , and u1 < uk in T .
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Let w′ be the neighbor of u1 on the u1–uk path in T . In order to show u1 < w1 � uk in
T , it remains to provew′ = w1. Suppose to the contrary thatw′ �= w1. Then the aT

k –b
T
1 path

and the r–bT
k path in T both go through u1 and w′. Hence the relations ak � b1 and a0 � bk

both hitB(u1)∩B(w′) � {x1, y1, z1}. Clearly, they cannot hit the same element. None of the
two relations hit x1, as otherwise a1 � x1 � b1 or a1 � x1 � bk in P (which is not possible
since k � 3 and the alternating cycle is strict). We conclude that B(u1) ∩ B(w′) = {y1, z1}.
Since the relation a0 � bk also hits B(u1) ∩ B(p1) = {x1, y1}, and thus hits y1, it follows
that a0 � y1 � bk and ak � z1 � b1 in P . Now let i ∈ {1, . . . , k − 1} be maximal such
that w′ �� ui in T . Note that there is such an index since w′ �� u1 in T . If w′ � aT

i in T ,
then the path from aT

i to ui in T goes through the edge u1w
′. If, on the other hand, w′ ‖ aT

i

in T , then the path from aT
i to bT

i+1 in T goes through the edge u1w
′. Thus at least one of

ai � xi and ai � bi+1 hits B(u1) ∩ B(w′) = {y1, z1}. Hence ai � y1 or ai � z1 in P .
However, since {y1, z1} � b1 in P , this implies ai � b1 in both cases. Given that i < k, this
contradicts the fact that the alternating cycle is strict. Therefore, we must have w′ = w1,
and u1 < w1 � uk in T , as claimed.

So far we know that w1 � ui in T for i = k, and it remains to show it for each
i ∈ {2, . . . , k − 1}. Arguing by contradiction, assume that this does not hold, and let
i ∈ {2, . . . , k−1} be maximal such thatw1 �� ui in T . By our choice it holds thatw1 � ui+1
in T , even in the case i = k − 1.

First suppose that ui = u1. Then w1 �� aT
i in T , because otherwise bT

i would be to the
right of bT

1 in T (Observation 9), contradicting the fact that (a1, b1) is the root of the strict
alternating cycle. But then, the path from aT

i to bT
i+1 goes through the edge u1w1 (since

w1 � ui+1 in T ). Thus the relation ai � bi+1 hits in particular B(u1); let q ∈ B(u1) be
such that ai � q � bi+1 in P . Given that u1 = ui we deduce x1 = xi , y1 = yi , and z1 = zi

(using α11(a1, b1) = α11(ai, bi)), and hence a1 � q in P (using α12(a1, b1) = α12(ai, bi)),
exactly as in the beginning of the proof. This implies a1 � q � bi+1 in P , and as i + 1 � 3
this contradicts once again the fact that the alternating cycle is strict. Therefore, u1 �= ui ,
and u1 < ui in T .

Let w′ be the neighbor of u1 on the u1–ui path in T . Note that w′ �= w1. The aT
i –b

T
i+1

path and the r–bT
i path both go through the edge u1w

′. Thus the relations ai � bi+1 and
a0 � bi both hit B(u1) ∩ B(w′) � {x1, y1, z1}. Clearly, they cannot hit the same element.
Since ai � x1 � bi+1 in P would imply a1 � bi+1 (which is not possible since i + 1 � 3)
while ai � y1 � bi+1 would imply ai � b1 (which cannot be since i < k), we deduce

ai � z1 � bi+1

in P , and
a0 � q � bi

in P , where q is the element in {x1, y1} such that B(u1) ∩ B(w′) = {q, z1}.
We distinguish two cases, depending whether q = x1 or q = y1. First suppose that

q = x1. Since a0 � q = x1 � bi in P , this implies a1 � x1 � bi in P , and hence
i = 2 (otherwise, the alternating cycle would not be strict). Furthermore, given that a0 � x1
in P and α12(a1, b1) = α12(a2, b2), we have a0 � x2 in P as well. The r–u2 path in T

includes the edge u1w
′ since w′ � u2 in T . Using that x2 ∈ B(u2), we deduce that the

relation a0 � x2 in P hits B(u1) ∩ B(w′) = {x1, z1}. In particular, at least one of x1 � x2
and z1 � x2 holds in P . Before considering each of these two possibilities, let us observe
that the aT

2 –u1 path in T includes the edge u2p2. It follows that the relation a2 � z1 hits
B(u2) ∩ B(p2) = {x2, y2}. Clearly, it cannot hit y2 (otherwise a2 � y2 � b2), and hence
x2 � z1 in P .
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Now, if z1 � x2 in P then x2 = z1. However, we also know that φ(x2) = φ(x1) �= φ(z1),
since α11(a1, b1) = α11(a2, b2), which is a contradiction.

On the other hand, if x1 � x2 in P then a1 � x1 � x2 � z1 � bi+1 = b3 in P , which
contradicts the fact the alternating cycle is strict. This concludes the case where q = x1.

Next, assume q = y1. Let j ∈ {1, . . . , i − 1} be maximal such that w′ �� uj in T . (Note
that there is such an index j since w′ �� u1 in T .) If w′ � aT

j in T then the path from aT
j

to uj in T goes through the edge u1w
′. If, on the other hand, w′ ‖ aT

j in T , then the path

from aT
j to bT

j+1 in T goes through the edge u1w
′ since w′ � uj+1 < bT

j+1 in T . Hence at
least one of the two relations aj � xj and aj � bj+1 hits {q, z1} = {y1, z1}. It follows that
aj � y1 or aj � z1 in P . The first inequality implies aj � y1 � b1 in P , a contradiction
since j �= k. The second inequality implies aj � z1 � bi+1 in P , which is not possible
since j �= i. This concludes the proof.

Claim 37 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui denote uaibi

for each i ∈ {1, 2, . . . , k}. Then the
u1–bT

1 path in T avoids u2.

Proof We denote waibi
, paibi

, xaibi
, yaibi

,by wi, pi, xi, yi respectively, for each i ∈
{1, 2, . . . , k}. We may assume α1(ai, bi) = left.

Arguing by contradiction, suppose that u1 � u2 < bT
1 in T . By Claim 36 we know

u1 < w1 � u2 < bT
2 in T . The aT

1 –b
T
2 path in T goes through the edge p2u2. Hence the

relation a1 � b2 hits B(p2) ∩ B(u2) = {x2, y2}. Clearly, it cannot hit x2 because otherwise
a2 � x2 � b2 in P . Therefore, a1 � y2 � b2 in P .

Now consider the path connecting r to bT
1 in T . This path also includes the edge p2u2.

Thus the relation a0 � b1 hits {x2, y2}. If it hits x2, then we obtain a2 � x2 � b1 in P ,
which contradicts the fact that the alternating cycle is strict (recall that k � 3). If it hits y2,
then we deduce a1 � y2 � b1 in P , again a contradiction.

Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). In what follows we will need to consider the nodes
qi := ui ∧ bT

1 of T where i ∈ {1, 2, . . . , k}. Observe that
u1 < w1 � qi � ui

in T for each i ∈ {2, 3, . . . , k} by Claim 36, and

q2 < u2

in T by Claim 37.

Claim 38 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui denote uaibi

and let qi := ui ∧ bT
1 , for each

i ∈ {1, 2, . . . , k}. Then
(i) ui �� q2 in T for each i ∈ {3, 4, . . . , k}, and
(ii) u1 < q2 � q3 < bT

1 in T .

Proof We denote waibi
, paibi

, xaibi
, yaibi

,by wi, pi, xi, yi respectively, for each i ∈
{1, 2, . . . , k}. We may assume α1(ai, bi) = left.



224 Order (2017) 34:185–234

To prove (i) we argue by contradiction: Suppose ui � q2 in T for some i ∈ {3, 4, . . . , k}.
Since q2 < bT

1 in T , and u1 < w1 � ui by Claim 36, it follows that u1 < w1 � ui �
q2 < bT

1 in T . In particular, the path connecting aT
1 to bT

2 in T goes through the edge piui .
Hence the relation a1 � b2 hits B(pi) ∩ B(ui) = {xi, yi}. If it hits xi then ai � xi � b2
in P , while if it hits yi then a1 � yi � bi in P . In both cases it contradicts the fact that the
alternating cycle is strict.

Let us now prove (ii). Using Claim 36 we already deduce that u1 < {q2, q3} < bT
1 in T .

Thus, it remains to show q2 � q3 in T . Arguing by contradiction, suppose q3 < q2 in T

(note that q2 and q3 are comparable in T ). Let i be the largest index in {3, 4, . . . , k} such
that qi < q2 in T . If i < k then qi < q2 � qi+1 � ui+1 < bT

i+1 in T . If i = k then clearly
qi < q2 < bT

1 in T . Thus in both cases

qi < q2 < bT
i+1 (22)

in T (taking indices cyclically).
Observe also that

q2 �� aT
i (23)

in T . Indeed, if q2 � aT
i in T then q2 � bT

i as well, since otherwise ui < q2 in T ,
contradicting (i). However, this implies q2 � ui in T , and hence q2 � qi since q2 < bT

1 , a
contradiction.

Now consider the edge p(q2)q2 in T and let B(p(q2))∩B(q2) = {c, d}. In the following,
we aim to show that the relevant part of T essentially looks like in Fig. 12, and consequently
that the relations ai � bi+1 and a2 � b3 have to hit {c, d}. From this observation we will
obtain our final contradiction.

Using (23) and that q2 � bT
i+1 in T (see (22)), we deduce that the path from aT

i to bT
i+1 in

T goes through this edge. Thus the relation ai � bi+1 hits {c, d}. Without loss of generality

ai � c � bi+1 (24)

in P . To see that a2 � b3 also hits {c, d} we first show that

q2 �� bT
3

in T . For this suppose q2 � bT
3 in T . Then q2 and u3 are comparable in T , and thus q2 < u3

in T by (i). Since q2 < bT
1 in T , it follows that q2 � u3 ∧ bT

1 = q3 in T , contradicting our
assumption that q3 < q2 in T .

So we have q2 �� bT
3 , and since q3 < q2 � u2 < aT

2 in T , we deduce that the path
connecting aT

2 to bT
3 in T also includes the edge p(q2)q2. Thus the relation a2 � b3 indeed

Fig. 12 Left: Situation in Claim 38 with i = 3 (under the assumption that q3 < q2 in T ). Right: Possible
situation in Claim 39 with i = 3 (under the assumptions that q2 = q3 and w �= w′)
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hits {c, d}. It cannot hit c because otherwise a2 � c � bi+1 (by (24)), which is not possible
since i �= 2. Hence we have

a2 � d � b3 (25)

in P . Now, the relation a0 � b2 clearly hits {c, d} as well, but this is not possible as this
implies ai � c � b2 (using (24)) or a2 � d � b2 in P (using (25)), a contradiction in both
cases. This concludes the proof of (ii).

The following claim is a strengthening of Claim 38(ii).

Claim 39 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui denote uaibi

and let qi := ui ∧ bT
1 , for each

i ∈ {1, 2, . . . , k}. Then
u1 < q2 < q3 < bT

1 in T .

Proof Using Claim 38(ii) we only need to show that q2 �= q3. Suppose to the contrary that
we have q2 = q3. Recall that q2 < u2 in T , by Claim 37. By Claim 38(ii)we cannot have
u3 = q3 since q2 = q3. Hence we also have q3 < u3 in T .

Now, let w be the neighbor of q2 on the path from q2 to u2 in T , and let w′ be the
neighbor of q3 on the path from q3 = q2 to u3 in T . Using that q2 < u2 and q3 < u3 in T

we deduce that
q2 < w � u2 and q3 < w′ � u3 (26)

in T . Let us first suppose that w = w′. Let i be the largest index in {3, 4, . . . , k} such that
w � ui in T . We claim that

w �� bT
i+1

in T (taking indices cyclically, as always). If i < k this is because w � bT
i+1 would imply

w �� aT
i+1 (since w �� ui+1 in T ), and thus ui+1 � q2 in T , contradicting (i) of Claim 38. If

i = k this is because w � bT
1 together with w � u2 (by (26)) would imply w � u2 ∧ bT

1 =
q2 in T , a contradiction.

Now, since w �� bT
i+1 in T we deduce that the path from aT

i to bT
i+1 includes the edge

q2w. Let B(w) ∩ B(q2) = {c, d}. Then the relations ai � bi+1 and a1 � b2 both hit {c, d},
but not the same element (as otherwise ai � b2 in P , which cannot be since i �= 1). Say we
have

ai � c � bi+1 and a1 � d � b2

in P . Observe that the path from r to bT
i in T goes through the edge q2w as well, and hence

a0 � bi also hits {c, d}. Thus c � bi or d � bi in P . In the first case we obtain ai � bi and
in the second a1 � bi , a contradiction in each case. This closes the case w = w′.

Finally, assume w �= w′. Let B(q2) = {c, d, e}. Let i be the largest index in {3, 4, . . . , k}
such that qi = q2. By Claim 38(ii) we know that qi �= ui (in particular ui �< bT

1 in T ), and
thus q2 = qi < ui in T . Let w′′ be the neighbor of q2 on the path from q2 to ui in T . Note
that we must have

q2 < w′′ � ui and w′′ ‖ bT
1 (27)

in T . Next we show that
w′′ �� bT

i+1

in T . Suppose that this is not true, and let us consider the case i < k first. Then w′′ � bT
i+1

would imply w′′ � aT
i+1 as otherwise ui+1 � q2 in T , contradicting (i) of Claim 38.

Moreover, this yields w′′ � ui+1 in T . However, combined with the fact that q2 � bT
1 and
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w′′ �� bT
1 in T (by (27)) this implies qi+1 = q2, contradicting the choice of i. If i = k then

w′′ � bT
1 together with w′′ � ui (see (27)) would imply w′′ � qi , again a contradiction.

So we indeed have w′′ �� bT
i+1 in T (for an example illustrating this situation with i = 3

see Fig. 12 on the right), and from this it follows that the aT
i –b

T
i+1 path in T includes the

node q2. Observe that so does the aT
1 –b

T
2 path (because u1 < w1 � q2 < bT

2 in T by Claim
36) and the aT

2 –b
T
3 path (because w �= w′). Hence the three relations a1 � b2, a2 � b3 and

ai � bi+1 all hit B(q2) = {c, d, e}. Clearly, no element in B(q2) is hit by two of these. In
other words, each element of B(q2) is greater or equal to a1, a2, or ai in P .

Furthermore, the paths from r to bT
1 , b

T
2 and bT

3 in T all include the edge p(q2)q2. Hence
two of the three relations a0 � b1, a0 � b2, a0 � b3 hit the same element in B(p(q2)) ∩
B(q2) � {c, d, e}. It follows that one element of the set {a1, a2, ai} is below two different
elements of {b1, b2, b3} in P , which contradicts the assumption that the alternating cycle is
strict. This concludes the proof.

Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui denote uaibi

for each i ∈ {1, 2, . . . , k}, and let
q2 := u2 ∧ bT

1 . In the following claims we will need to consider three specific neighbors
of the node q2 in T , namely, the neighbors of q2 on the q2–u1 path, the q2–u2 path, and
the q2–bT

1 path in T . Let us denote these nodes by p(q2), m(q2) and n(q2), respectively. By
Claims 36 and 37, p(q2), m(q2) and n(q2) are well defined and distinct.

The following claim is illustrated in Fig. 13.

Claim 40 Let � ∈ �(ν14) and suppose that {(ai, bi)}ki=1 is a strict alternating cycle in
MM(P, ν14, �) with root (a1, b1). Let ui denote uaibi

and let qi := ui ∧ bT
1 , for each

i ∈ {1, 2, . . . , k}. Then the elements of B(q2) can be written as B(q2) = {c, d, e} in such a
way that

(i) B(q2) ∩ B(p(q2)) = {c, d};
(ii) B(q2) ∩ B(m(q2)) = {c, e};
(iii) B(q2) ∩ B(n(q2)) = {d, e};

Fig. 13 Illustration of Claim 40
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and so that in P we have

(iv)
a1 � c � b2;
a0 � d � b1;
a2 � e � b3;

(v)
c � d;
e � d;
c ‖ e;

(vi) a2 � c;
a2 � d.

Proof By Claims 36-39 we know that u1 < w1 � q2 < u2 < {aT
2 , bT

2 } and q2 < q3 <

{bT
1 , aT

3 , bT
3 } in T . Thus the aT

1 –b
T
2 path in T goes through the nodes p(q2), q2, and m(q2);

the r–bT
1 path goes through p(q2), q2, and n(q2), and the aT

2 –b
T
3 path goes through m(q2),

q2, and n(q2). It follows that the corresponding three relations a1 � b2, a0 � b1 and a2 � b3
in P hit respectively the two sets B(q2) ∩ B(p(q2)) and B(q2) ∩ B(m(q2)); the two sets
B(q2) ∩ B(p(q2)) and B(q2) ∩ B(n(q2)), and the two sets B(q2) ∩ B(m(q2)) and B(q2) ∩
B(n(q2)). Clearly, no element of B(q2) is hit by two of these three relations. It follows that
the elements of B(q2) can be written as B(q2) = {c, d, e} in such a way that properties
(i)-(vi) hold. The remaining two properties (v) and (vi) are immediate consequences of
these.

For each � ∈ �(ν14) we define a corresponding directed graph K̂� on the set
MM(P, ν14, �) similarly as in Section 3.8: Given two distinct pairs (a1, b1), (a2, b2) ∈
MM(P, ν14, �), there is an arc from (a1, b1) to (a2, b2) in K̂� if and only if there is a
strict alternating cycle {(a′

i , b
′
i )}ki=1 in MM(P, ν14, �) with root (a′

1, b
′
1) which is such that

(a′
1, b

′
1) = (a1, b1) and (a′

2, b
′
2) = (a2, b2). In the latter case, we say that the arc f is

induced by the strict alternating cycle {(a′
i , b

′
i )}ki=1.

Note that there could possibly be different strict alternating cycles inducing the same arc
in K̂� . Observe also that if {(ai, bi)}ki=1 is a strict alternating cycle inducing an arc in K̂�

then (a1, b1) is always the root of the cycle (by the definition of ‘inducing’).
For each arc f = ((a1, b1), (a2, b2)) of K̂� , define the corresponding three nodes of T :

u−(f ) := ua1b1;
u+(f ) := ua2b2;
q(f ) := ua2b2 ∧ bT

1 .

Observe that
u−(f ) < wa1b1 � q(f ) < u+(f )

in T by Claims 36 and 37. This will be used repeatedly in what follows.

Claim 41 For each � ∈ �(ν14), any two arcs f, g in K̂� sharing the same source satisfy
q(f ) = q(g).

Proof Assume to the contrary that q(f ) �= q(g). Let (a1, b1) ∈ MM(P, ν14, �) denote the
source of the two arcs f and g. By definition q(f ) < bT

1 and q(g) < bT
1 in T . Thus in

particular q(f ) and q(g) are comparable in T , say without loss of generality q(f ) < q(g).
Hence we have ua1b1 < wa1b1 � q(f ) < q(g) < bT

1 in T .
Let (a2, b2), (a

′
2, b

′
2) ∈ MM(P, ν14, �) denote the targets of arcs f and g, respectively.

Let (a3, b3), . . . , (ak, bk) ∈ MM(P, ν14, �) be such that {(ai, bi)}ki=1 is a strict alternating
cycle inducing f . Write the elements of B(q(f )) as B(q(f )) = {c, d, e} as in Claim 40
when applied to the latter cycle. Then the paths from aT

1 to b′T
2 and from r to bT

1 in T

both include the three nodes p(q(f )), q(f ), and n(q(f )). Hence, the two relations a1 � b′
2
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and a0 � b1 in P both hit the two sets B(q(f )) ∩ B(p(q(f ))) = {c, d} and B(q(f )) ∩
B(n(q(f ))) = {d, e}. On the other hand, each of c, d, e is clearly hit by at most one of these
two relations. It follows that one relation hits d and the other hits both c and e, implying
c � e in P by Observation 10. However, this contradicts c ‖ e in P (cf. property (v) of Claim
40).

The following claim is similar to the previous one.

Claim 42 For each � ∈ �(ν14), any two arcs f, g in K̂� sharing the same target satisfy
q(f ) = q(g).

Proof Assume to the contrary that q(f ) �= q(g). Let (a2, b2) ∈ MM(P, ν14, �) denote the
common target of the two arcs f and g. We have q(f ) � ua2b2 and q(g) � ua2b2 in T .
Thus q(f ) and q(g) are comparable in T , say q(f ) < q(g) in T .

Applying Claim 40 on a strict alternating cycle inducing f , we see that there exists an
element e ∈ B(q(f )) such that a2 � e in P . Since q(f ) < q(g) � ua2b2 < aT

2 in T ,
the path from q(f ) to aT

2 in T goes through p(q(g)) and q(g). Thus the relation a2 � e

hits B(q(g)) ∩ B(p(q(g))), and hence a2 � s in P for some s ∈ B(q(g)) ∩ B(p(q(g))).
However, applying Claim 40 on a strict alternating cycle inducing g this time, we deduce
that a2 � t in P for each t ∈ B(q(g)) ∩ B(p(q(g))) (cf. property (vi)), and therefore in
particular a2 � s in P , a contradiction.

Claim 43 For each � ∈ �(ν14) and any two arcs f, g in K̂� , we neither have

q(f ) < q(g) < u+(f ) � u+(g)

nor
q(f ) < q(g) < u+(g) � u+(f )

in T .

Proof Let (a2, b2) and (a′
2, b

′
2) denote the targets of f and g, respectively. Arguing by

contradiction, assume that at least one of the two inequalities holds. Then we have

q(f ) � p(q(g)) < q(g) < m(q(g)) � {ua2b2 , ua′
2b

′
2
} (28)

in T .
Now consider a strict alternating cycle inducing g and write the elements of B(q(g))

as B(q(g)) = {c, d, e} as in Claim 40 when applied to the latter cycle. See Fig. 14 for an
illustration.

By this claim we have

c � b′
2 and a′

2 � e and e � d (29)

in P . Applying Claim 40 on a strict alternating cycle inducing f , we also deduce that there
exists s ∈ B(q(f )) such that a2 � s in P .

Given that by (28) the path from aT
2 to q(f ) goes first through ua2b2 and then through

the three nodes m(q(g)), q(g) and p(q(g)) in T , it follows that the relation a2 � s hits both
B(q(g)) ∩ B(m(q(g))) = {c, e} and B(q(g)) ∩ B(p(q(g))) = {c, d}. If it did not hit c, then
it would hit both d and e, and we would have e � d in P by Observation 10, which is not
possible by (29). Thus a2 � s hits c, that is, a2 � c � s in P . Together with (29) this implies

a2 � c � b′
2

in P , and we also deduce (a2, b2) �= (a′
2, b

′
2).
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Fig. 14 Illustration of the proof of Claim 43

Now, the path from r to bT
2 in T goes through q(g) and m(q(g)), and thus a0 � b2 hits

{c, e}. It cannot hit c, as otherwise a2 � c � b2 in P . Hence a0 � b2 hits e, and we have
a0 � e � b2 in P , which by (29) implies

a′
2 � e � b2.

It follows that (a2, b2), (a
′
2, b

′
2) is an alternating cycle of length 2, which is a contradiction

since there is no such cycle in MM(P, ν14, �).

For the next claim let us recall that given a pair (a, b) ∈ MM(P, ν14, �), the elements
of B(uab) are labeled with xab, yab, zab, and it holds that B(uab)∩B(p(uab)) = {xab, yab},

a � xab �� b, and a �� yab � b

in P .

Claim 44 For each � ∈ �(ν14), no two arcs f, g in K̂� satisfy

u−(f ) � q(g) < u+(g) � q(f ).

in T .

Proof Assume to the contrary that the inequality holds. Let {(ai, bi)}ki=1 be a strict alter-
nating cycle inducing f and let {(a′

i , b
′
i )}�i=1 be one inducing g. Let ui := uaibi

, qi :=
uaibi

∧ bT
1 , xi := xaibi

, yi := yaibi
, and zi := zaibi

for each i ∈ {1, . . . , k}, and let
u′

i := ua′
i b

′
i
, q ′

i := ua′
i b

′
i
∧b′T

1 , x′
i := xa′

i b
′
i
, y′

i := ya′
i b

′
i
, and z′

i := za′
i b

′
i
for each i ∈ {1, . . . , �}.

Thus u−(f ) = u1, q(f ) = q2, u+(g) = u′
2, q(g) = q ′

2, and

u1 � q ′
2 < u′

2 � q2 < {bT
1 , bT

2 } (30)

in T by our assumption. See Fig. 15 for an illustration of the situation.
The aT

1 –b
T
2 path and the r–bT

1 path both go through p(u′
2) and u′

2 in T . Thus the two
relations a1 � b2 and a0 � b1 both hit B(p(u′

2)) ∩ B(u′
2) = {x′

2, y
′
2}, and clearly neither
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of x′
2, y

′
2 is hit by both relations. We cannot have a1 � y′

2 � b2 and a0 � x′
2 � b1 in

P , because otherwise we would have a1 � y′
2 � b′

2 and a′
2 � x′

2 � b1 in P , implying
that (a1, b1), (a′

2, b
′
2) is an alternating cycle of length 2 in MM(P, ν14, �), a contradiction.

Hence we have

a1 � x′
2 � b2 and a0 � y′

2 � b1 (31)

in P .
Let us denote the elements in B(q ′

2) as B(q ′
2) = {c, d, e} as in Claim 40 when applied to

the strict alternating cycle {(a′
i , b

′
i )}�i=1. Then we have a0 � d � b′

1 in P , as well as a′
2 �

e � b′
3 and a′

1 � c � b′
2. Given that the relation a′

2 � e hits B(p(u′
2)) ∩ B(u′

2) = {x′
2, y

′
2},

and that it clearly cannot hit y′
2 because y′

2 � b′
2 in P , we have a′

2 � x′
2 � e in P . Similarly,

c � b′
2 hits {x′

2, y
′
2} as well and cannot hit x′

2 because a′
2 � x′

2 in P , hence c � y′
2 � b′

2 in
P . Summarizing, we have

a′
2 � x′

2 � e � b′
3, (32)

a′
1 � c � y′

2 � b′
2, (33)

a0 � d � b′
1 (34)

in P .
Recall that u1 � q ′

2 in T by (30). We split the rest of the argument into two cases and
start with the case that u1 < q ′

2 in T . Then the path from aT
1 to u′

2 goes through p(q ′
2) and

q ′
2. It follows that the relation a1 � x′

2 hits B(p(q ′
2)) ∩ B(q ′

2) = {c, d}. If it hits c then
c � x′

2 in P , which implies a′
1 � c � x′

2 � e � b′
3 by (33) and (32), a contradiction

to the assumption that we deal with a strict alternating cycle of length at least 3. Hence,
we have a1 � d � x′

2. However, using (34) we obtain a1 � d � b′
1 in P , and since

a′
1 � c � y′

2 � b1 in P (by combining (33) and (31)) this implies that (a1, b1) �= (a′
1, b

′
1)

and therefore that (a1, b1), (a
′
1, b

′
1) is an alternating cycle of length 2 in MM(P, ν14, �), a

contradiction.

Fig. 15 Illustration of the proof of Claim 44
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It remains to consider the case that u1 = q ′
2 in T . Then the path from aT

1 to u′
2 in T goes

through q ′
2 and m(q ′

2). Thus a1 � x′
2 hits B(q ′

2) ∩ B(m(q ′
2)) = {c, e}. The relation a1 � x′

2
cannot hit c, for the same reason as in the previous paragraph. Hence a1 � e � x′

2 in P ,
implying that x′

2 = e by (32).
Now, observe that e ∈ B(u1) since u1 = q ′

2. Given that e �∈ B(q ′
2)∩B(p(q ′

2)) = {c, d} =
B(u1) ∩ B(p(u1)) = {x1, y1}, we conclude x′

2 = e = z1. However, in the coloring φ we
have φ(x′

2) = φ(x1) �= φ(z1) since α11(a1, b1) = α11(a
′
2, b

′
2), contradicting x′

2 = z1. This
concludes the proof.

Claim 45 Let � ∈ �(ν14) and suppose that f1, f2, g1, g2 are arcs of K̂� satisfying

• u+(f1) = u−(f2)
• u+(g1) = u−(g2)
• q(f2) = q(g2).

Then it also holds that q(f1) = q(g1).

Proof Recall that u−(f ) < q(f ) < u+(f ) for every arc f of K̂� (by Claims 36 and 37).
It follows from the assumptions that

q(g1) < u+(g1) = u−(g2) < q(g2) (35)

and
q(f1) < u+(f1) = u−(f2) < q(f2) (36)

in T . Thus q(g1) and q(f1) are comparable in T . Arguing by contradiction, suppose that
q(f1) �= q(g1). Using symmetry, we may assume without loss of generality q(f1) < q(g1)

in T .
Since q(g1) < q(g2) = q(f2) by (35) and u+(f1) = u−(f2) < q(f2) in T by (36), the

two nodes q(g1) and u+(f1) are also comparable in T .
First suppose that q(g1) < u+(f1) in T . Then observe that the two nodes u+(g1) and

u+(f1) are comparable in T since u+(g1) = u−(g2) < q(g2) = q(f2) and u+(f1) < q(f2)

in T (by (35) and (36)). Hence we have q(f1) < q(g1) < u+(f1) � u+(g1) or q(f1) <

q(g1) < u+(g1) � u+(f1) in T , neither of which is possible by Claim 43, a contradiction.
Next, assume that q(g1) � u+(f1) in T . We immediately obtain u−(f2) = u+(f1) �

q(g1) < u+(g1) < q(f2) in T , which is forbidden by Claim 44, again a contradiction.

Claim 46 The graph K̂� is bipartite for each � ∈ �(ν14).

Proof Suppose that there is an odd cycle C = {(ai, bi)}ki=1 in the undirected graph under-

lying K̂� . (Thus C is not necessarily a directed cycle.) For each i ∈ {1, . . . , k}, let fi be an
arc between (ai, bi) and (ai+1, bi+1) in K̂� , where indices are taken cyclically as always. If
fi = ((ai, bi), (ai+1, bi+1)), that is, (ai, bi) is the source of fi , we say that fi goes forward,
while if fi = ((ai+1, bi+1), (ai, bi)) we say that fi goes backward.

We define a cyclically ordered sequence S of arcs in {f1, f2, . . . , fk} as follows. We
start with S = (f1, . . . , fk). It will be convenient to say that we go along S in clock-
wise order whenver we use the forward direction in S (to not mix it up with forward and
backward edges). Now, we repeat the following modification until it is no longer possible:
If S has size at least 5 and there are two (cyclically) consecutive arcs f, f ′ in clockwise
order in S with f going forward and f ′ going backward then remove both f and f ′
from S.
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By construction, the resulting sequence S has the following property: Either S con-
tains at least five arcs and all arcs go in the same direction, or S contains exactly three
arcs.

We claim that during the above iterative process the cyclic sequence S fulfills the fol-
lowing invariants at all times: For any two consecutive arcs f and f ′ in clockwise order in
S,

(i) if f and f ′ both go forward then q(f ) < q(f ′) in T , while if f and f ′ both go
backward then q(f ) > q(f ′) in T ;

(ii) if f and f ′ go in the same direction then there exist arcs g, g′ in K̂� such that

• q(g) = q(f );
• q(g′) = q(f ′), and
• u+(g) = u−(g′) if f and f ′ go forward, u−(g) = u+(g′) otherwise, and

(iii) if f and f ′ go in opposite directions then q(f ) = q(f ′).

Note that (ii) implies (i). Indeed, suppose f and f ′ go forward (for the backward
direction the argument is analogous). Then take arcs g and g′ witnessing (ii). We have
q(f ) = q(g) < u+(g) = u−(g′) < q(g′) = q(f ′). (Recall that u−(g) < q(g) < u+(g)

for every arc g of K̂� by Claims 36 and 37.)
First, we prove that the invariants hold at the beginning of the process, so for the sequence

(f1, . . . , fk). In order to prove (ii), for each i ∈ {1, . . . , k} take g := fi and g′ := fi+1.
Then clearly (ii)holds, and property (iii) follows from Claims 41 and 42.

Next we show that the invariants hold after each modification step. Consider thus the
sequence S just before a modification step, and suppose that S satisfied the required prop-
erties. Let f 0, f 1, f 2, f 3 be the four consecutive arcs in S in clockwise order which are
such that f 1 goes forward and f 2 goes backward. After removing f 1 and f 2, the arcs f 0

and f 3 will become consecutive in S (in clockwise order). We only need to establish the
invariants for the consecutive pair f 0, f 3, since all other consecutive pairs already satisfy
them by assumption.

Let us start with the case that f 0 and f 3 both go forward. Since f 1, f 2 and f 3 alternate
in directions, we get q(f 1) = q(f 2) = q(f 3) by (iii). By (ii) and the fact that f 0 and
f 1 go forward, there are arcs g0, g1 in K̂� such that q(g0) = q(f 0), q(g1) = q(f 1) and
u+(g0) = u−(g1). Now, since q(g1) = q(f 1) = q(f 3), the arcs g0, g1 also fulfill the
conditions of (ii) for f 0 and f 3.

The case that both f 0 and f 3 go backward is symmetric to the previous one and is thus
omitted.

Next, suppose that f 0 goes forward and f 3 goes backward. Here we have to show that
(iii) holds for f 0 and f 3. Since f 0 and f 1 both go forward and f 2 and f 3 both go backward,
by (ii) there are arcs g0, g1 and g2, g3 in K̂� such that q(gj ) = q(f j ) for each j ∈
{0, 1, 2, 3}, u+(g0) = u−(g1), and u−(g2) = u+(g3). Using (iii) we deduce that q(g1) =
q(f 1) = q(f 2) = q(g2). Applying Claim 45 on the arcs g0, g1, g3, g2 (in this order), we
conclude q(f 0) = q(g0) = q(g3) = q(f 3), as desired.

Finally, assume that f 0 goes backward and f 3 goes forward. Again we have show that
(iii) holds for f 0, f 3. But in this case the four directions of f 0, f 1, f 2, f 3 alternate. It
follows that q(f 0) = q(f 1) = q(f 2) = q(f 3) by (iii).

Now that the above invariants of S have been established, let us go back to the final
sequence S resulting from the modification process. We claim that there are always two
consecutive arcs going in opposite directions in S. Indeed, if not then they either all go
forward or all go backward. In the first case q(f ) < q(f ′) in T for any two consecutive
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arcs f, f ′ in clockwise order in S by (i), while in the second case q(f ) > q(f ′) in T for
any two such arcs f, f ′. However, neither of these two situations can occur in a circular
sequence.

This shows in particular that the modification process results in a sequence S of size 3,
say S = (f 1, f 2, f 3). We may suppose without loss of generality that f 1 and f 2 go in the
same direction and f 3 in the other (since the sequence S can always be shifted cyclically
to ensure this property). This implies q(f 1) �= q(f 2) by (i), q(f 2) = q(f 3) by (i), and
q(f 3) = q(f 1) by (iii). This is a contradiction, which concludes the proof.

Using Claim 46 we let ψ14,� : MM(P, ν14, �) → {1, 2} be a 2-coloring of K̂� , for each
� ∈ �(ν14). The function α14 then records the color of a pair in this coloring:

3.13 Fourth leaf of �: Node ν15

It remains to verify that for each � ∈ �(ν15) the set MM(P, ν15, �) is reversible. Recall
that α13 ensures that there are no 2-cycles in MM(P, ν15, �) and that α14 ensures that
there are no strict alternating cycles of length at least 3 in MM(P, ν15, �). It follows that
MM(P, ν15, �) is reversible.

This concludes the proof of Theorem 7.
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