28,363 research outputs found

    On the diameter of random planar graphs

    Get PDF
    We show that the diameter D(G_n) of a random labelled connected planar graph with n vertices is equal to n^{1/4+o(1)}, in probability. More precisely there exists a constant c>0 such that the probability that D(G_n) lies in the interval (n^{1/4-\epsilon},n^{1/4+\epsilon}) is greater than 1-\exp(-n^{c\epsilon}) for {\epsilon} small enough and n>n_0(\epsilon). We prove similar statements for 2-connected and 3-connected planar graphs and maps.Comment: 24 pages, 7 figure

    On the diameter of random planar graphs

    No full text
    International audienceWe show that the diameter D(Gn)D(G_n) of a random (unembedded) labelled connected planar graph with nn vertices is asymptotically almost surely of order n1/4n^{1/4}, in the sense that there exists a constant c>0c>0 such that P(D(Gn)(n1/4ϵ,n1/4+ϵ))1exp(ncϵ)P(D(G_n) \in (n^{1/4-\epsilon} ,n^{1/4+\epsilon})) \geq 1-\exp (-n^{c\epsilon}) for ϵ\epsilon small enough and nn large enough (nn0(ϵ))(n \geq n_0(\epsilon)). We prove similar statements for rooted 22-connected and 33-connected embedded (maps) and unembedded planar graphs

    Geometry and Dynamics for Hierarchical Regular Networks

    Full text link
    The recently introduced hierarchical regular networks HN3 and HN4 are analyzed in detail. We use renormalization group arguments to show that HN3, a 3-regular planar graph, has a diameter growing as \sqrt{N} with the system size, and random walks on HN3 exhibit super-diffusion with an anomalous exponent d_w = 2 - \log_2\phi = 1.306..., where \phi = (\sqrt{5} + 1)/2 = 1.618... is the "golden ratio." In contrast, HN4, a non-planar 4-regular graph, has a diameter that grows slower than any power of N, yet, fast than any power of \ln N . In an annealed approximation we can show that diffusive transport on HN4 occurs ballistically (d_w = 1). Walkers on both graphs possess a first- return probability with a power law tail characterized by an exponent \mu = 2 -1/d_w . It is shown explicitly that recurrence properties on HN3 depend on the starting site.Comment: 15 pages, revtex; published version; find related material at http://www.physics.emory.edu/faculty/boettcher

    Random graphs from a block-stable class

    Full text link
    A class of graphs is called block-stable when a graph is in the class if and only if each of its blocks is. We show that, as for trees, for most nn-vertex graphs in such a class, each vertex is in at most (1+o(1))logn/loglogn(1+o(1)) \log n / \log\log n blocks, and each path passes through at most 5(nlogn)1/25 (n \log n)^{1/2} blocks. These results extend to `weakly block-stable' classes of graphs

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    Traffic Analysis in Random Delaunay Tessellations and Other Graphs

    Full text link
    In this work we study the degree distribution, the maximum vertex and edge flow in non-uniform random Delaunay triangulations when geodesic routing is used. We also investigate the vertex and edge flow in Erd\"os-Renyi random graphs, geometric random graphs, expanders and random kk-regular graphs. Moreover we show that adding a random matching to the original graph can considerably reduced the maximum vertex flow.Comment: Submitted to the Journal of Discrete Computational Geometr

    Random planar graphs and the London street network

    Get PDF
    In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Comparing the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city
    corecore