1,583 research outputs found

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Resource Allocation Techniques for Non-Orthogonal Multiple Access Scheme for 5G and Beyond Wireless Networks

    Get PDF
    The exponential growth of wireless networks and the number of connected devices as well as the emergence of new multimedia-based services have resulted in growing demands for high data-rate communications, and a spectrum crisis. Hence, new approaches are required for better utilization of spectrum and to address the high data- rate requirements in future wireless communication systems. Non-orthogonal multiple access (NOMA) has been envisioned as a promising multiple access technique for 5G and beyond wireless networks due to its potential to achieve high spectral efficiency (SE) and energy efficiency (EE) as well as to provide massive connectivity in supporting the proliferation of Internet of Things. In NOMA, multiple users can share the same wireless resources by applying superposition coding (SC) and power domain multi- plexing at the transmitter and employing successive interference cancellation (SIC) technique at the receiver for multi-user detection. NOMA outperforms conventional orthogonal multiple access (OMA) by simultaneously sharing the available communication resources between all users via the power domain multiplexing which offers a significant performance gain in terms of SE. In this thesis, several resource allocation problems have been addressed in NOMA based communication systems, in order to improve network performance in terms of power consumption, fairness and EE. In particular, the NOMA scheme has been studied in multiple-input-single-output transmissions where transmit beamformers are designed to satisfy quality of service using convex optimization techniques. To incorporate the channel uncertainties in beamforming design, robust schemes are proposed based on the worst-case design and the outage probabilistic-based design. Finally, the EE is investigated for non-clustering and clustering NOMA schemes with imperfect channel state information. To eliminate the interference between different clusters, zero-forcing beamformers are employed at the base station. Theoretical analysis and algorithmic solutions are derived and the performance of all these schemes has been verified using simulation results

    Power Allocation in Uplink NOMA-Aided Massive MIMO Systems

    Get PDF
    In the development of the fifth-generation (5G) as well as the vision for the future generations of wireless communications networks, massive multiple-input multiple-output (MIMO) technology has played an increasingly important role as a key enabler to meet the growing demand for very high data throughput. By equipping base stations (BSs) with hundreds to thousands antennas, the massive MIMO technology is capable of simultaneously serving multiple users in the same time-frequency resources with simple linear signal processing in both the downlink (DL) and uplink (UL) transmissions. Thanks to the asymptotically orthogonal property of users' wireless channels, the simple linear signal processing can effectively mitigate inter-user interference and noise while boosting the desired signal's gain, and hence achieves high data throughput. In order to realize this orthogonal property in a practical system, one critical requirement in the massive MIMO technology is to have the instantaneous channel state information (CSI), which is acquired via channel estimation with pilot signaling. Unfortunately, the connection capability of a conventional massive MIMO system is strictly limited by the time resource spent for channel estimation. Attempting to serve more users beyond the limit may result in a phenomenon known as pilot contamination, which causes correlated interference, lowers signal gain and hence, severely degrades the system's performance. A natural question is ``Is it at all possible to serve more users beyond the limit of a conventional massive MIMO system?''. The main contribution of this thesis is to provide a promising solution by integrating the concept of nonorthogonal multiple access (NOMA) into a massive MIMO system. The key concept of NOMA is based on assigning each unit of orthogonal radio resources, such as frequency carriers, time slots or spreading codes, to more than one user and utilize a non-linear signal processing technique like successive interference cancellation (SIC) or dirty paper coding (DPC) to mitigate inter-user interference. In a massive MIMO system, pilot sequences are also orthogonal resources, which can be allocated with the NOMA approach. By sharing a pilot sequence to more than one user and utilizing the SIC technique, a massive MIMO system can serve more users with a fixed amount of time spent for channel estimation. However, as a consequence of pilot reuse, correlated interference becomes the main challenge that limits the spectral efficiency (SE) of a massive MIMO-NOMA system. To address this issue, this thesis focuses on how to mitigate correlated interference when combining NOMA into a massive MIMO system in order to accommodate a higher number of wireless users. In the first part, we consider the problem of SIC in a single-cell massive MIMO system in order to serve twice the number of users with the aid of time-offset pilots. With the proposed time-offset pilots, users are divided into two groups and the uplink pilots from one group are transmitted simultaneously with the uplink data of the other group, which allows the system to accommodate more users for a given number of pilots. Successive interference cancellation is developed to ease the effect of pilot contamination and enhance data detection. In the second part, the work is extended to a cell-free network, where there is no cell boundary and a user can be served by multiple base stations. The chapter focuses on the NOMA approach for sharing pilot sequences among users. Unlike the conventional cell-free massive MIMO-NOMA systems in which the UL signals from different access points are equally combined over the backhaul network, we first develop an optimal backhaul combining (OBC) method to maximize the UL signal-to-interference-plus-noise ratio (SINR). It is shown that, by using OBC, the correlated interference can be effectively mitigated if the number of users assigned to each pilot sequence is less than or equal to the number of base stations. As a result, the cell-free massive MIMO-NOMA system with OBC can enjoy unlimited performance when the number of antennas at each BS tends to infinity. Finally, we investigate the impact of imperfect SIC to a NOMA cell-free massive MIMO system. Unlike the majority of existing research works on performance evaluation of NOMA, which assume perfect channel state information and perfect data detection for SIC, we take into account the effect of practical (hence imperfect) SIC. We show that the received signal at the backhaul network of a cell-free massive MIMO-NOMA system can be effectively treated as a signal received over an additive white Gaussian noised (AWGN) channel. As a result, a discrete joint distribution between the interfering signal and its detected version can be analytically found, from which an adaptive SIC scheme is proposed to improve performance of interference cancellation

    Enhancement of outage probability for down link cooperative non-orthogonal multiple access in fifth-generation network

    Get PDF
    Future wireless networks are expected to face several issues, but cooperative non-orthogonal multiple access (C-NOMA) is a promising technology that could help solve them by providing unprecedented levels of connection and system capacity. In this regard, the influence of the power location coefficient (PLC) for remote users adopting multiple-input-multiple-output (MIMO) and massive MIMO has been explored to provide effective performance. The goal of this study is to design fifth-generation (5G) downlink (DL) NOMA power domain (PD) networks with a variety of distances and PLCs for remote users and then to compare their outage probability (OP) performance versus signal to noise ratio (SNR). As a novel approach to improving OP performance rate and mitigating the influence of the PLC for remote users, DL C-NOMA is combined with 16×16, 32×23, and 64×64 MIMO and 128×128, 256×256, and 512×512 massive MIMO. The results were obtained that the 64×64 MIMO improves the OP for the remote user by 65.0E-03, while the 512×512 massive MIMO achieved an improvement that reaches 1.0E-06 for the PLC of 0.8 at SNR of 14 dB. The Rayleigh fading channels and MATLAB simulation tools were utilized to carry out the study work
    • …
    corecore