51,172 research outputs found

    Gentzen-Prawitz Natural Deduction as a Teaching Tool

    Full text link
    We report a four-years experiment in teaching reasoning to undergraduate students, ranging from weak to gifted, using Gentzen-Prawitz's style natural deduction. We argue that this pedagogical approach is a good alternative to the use of Boolean algebra for teaching reasoning, especially for computer scientists and formal methods practionners

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs

    The Deduction Theorem for Strong Propositional Proof Systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NPUnknown control sequence '\mathsf' -pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NPUnknown control sequence '\mathsf' -pairs

    On a Partial Decision Method for Dynamic Proofs

    Get PDF
    This paper concerns a goal directed proof procedure for the propositional fragment of the adaptive logic ACLuN1. At the propositional level, it forms an algorithm for final derivability. If extended to the predicative level, it provides a criterion for final derivability. This is essential in view of the absence of a positive test. The procedure may be generalized to all flat adaptive logics.Comment: 18 pages. Originally published in proc. PCL 2002, a FLoC workshop; eds. Hendrik Decker, Dina Goldin, Jorgen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/

    An Introduction to Critical Thinking and Symbolic Logic Volume 1: Formal Logic

    Get PDF
    This textbook has developed over the last few years of teaching introductory symbolic logic and critical thinking courses. It has been truly a pleasure to have benefited from such great students and colleagues over the years. As we have become increasingly frustrated with the costs of traditional logic textbooks (though many of them deserve high praise for their accuracy and depth), the move to open source has become more and more attractive. We're happy to provide it free of charge for educational use. With that being said, there are always improvements to be made here and we would be most grateful for constructive feedback and criticism. We have chosen to write this text in LaTex and have adopted certain conventions with symbols. Certainly many important aspects of critical thinking and logic have been omitted here, including historical developments and key logicians, and for that we apologize. Our goal was to create a textbook that could be provided to students free of charge and still contain some of the more important elements of critical thinking and introductory logic. To that end, an additional benefit of providing this textbook as a Open Education Resource (OER) is that we will be able to provide newer updated versions of this text more frequently, and without any concern about increased charges each time. We are particularly looking forward to expanding our examples, and adding student exercises. We will additionally aim to continually improve the quality and accessibility of our text for students and faculty alike. We have included a bibliography that includes many admirable textbooks, all of which we have benefited from. The interested reader is encouraged to consult these texts for further study and clarification. These texts have been a great inspiration for us and provide features to students that this concise textbook does not. We would both like to thank the philosophy students at numerous schools in the Puget Sound region for their patience and helpful suggestions. In particular, we would like to thank our colleagues at Green River College, who have helped us immensely in numerous different ways. Please feel free to contact us with comments and suggestions. We will strive to correct errors when pointed out, add necessary material, and make other additional and needed changes as they arise. Please check back for the most up to date version

    Doing and Showing

    Get PDF
    The persisting gap between the formal and the informal mathematics is due to an inadequate notion of mathematical theory behind the current formalization techniques. I mean the (informal) notion of axiomatic theory according to which a mathematical theory consists of a set of axioms and further theorems deduced from these axioms according to certain rules of logical inference. Thus the usual notion of axiomatic method is inadequate and needs a replacement.Comment: 54 pages, 2 figure
    corecore