27 research outputs found

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics

    Get PDF
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic

    Get PDF

    Display to Labeled Proofs and Back Again for Tense Logics

    Get PDF
    We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special form that is translatable to a derivation in the associated display calculus. A key insight in this converse translation is a canonical representation of display sequents as labeled polytrees. Labeled polytrees, which represent equivalence classes of display sequents modulo display postulates, also shed light on related correspondence results for tense logics

    Inducing syntactic cut-elimination for indexed nested sequents

    Full text link
    The key to the proof-theoretic study of a logic is a proof calculus with a subformula property. Many different proof formalisms have been introduced (e.g. sequent, nested sequent, labelled sequent formalisms) in order to provide such calculi for the many logics of interest. The nested sequent formalism was recently generalised to indexed nested sequents in order to yield proof calculi with the subformula property for extensions of the modal logic K by (Lemmon-Scott) Geach axioms. The proofs of completeness and cut-elimination therein were semantic and intricate. Here we show that derivations in the labelled sequent formalism whose sequents are `almost treelike' correspond exactly to indexed nested sequents. This correspondence is exploited to induce syntactic proofs for indexed nested sequent calculi making use of the elegant proofs that exist for the labelled sequent calculi. A larger goal of this work is to demonstrate how specialising existing proof-theoretic transformations alleviate the need for independent proofs in each formalism. Such coercion can also be used to induce new cutfree calculi. We employ this to present the first indexed nested sequent calculi for intermediate logics.Comment: This is an extended version of the conference paper [20

    Clausal Resolution for Modal Logics of Confluence

    Get PDF
    We present a clausal resolution-based method for normal multimodal logics of confluence, whose Kripke semantics are based on frames characterised by appropriate instances of the Church-Rosser property. Here we restrict attention to eight families of such logics. We show how the inference rules related to the normal logics of confluence can be systematically obtained from the parametrised axioms that characterise such systems. We discuss soundness, completeness, and termination of the method. In particular, completeness can be modularly proved by showing that the conclusions of each newly added inference rule ensures that the corresponding conditions on frames hold. Some examples are given in order to illustrate the use of the method.Comment: 15 pages, 1 figure. Preprint of the paper accepted to IJCAR 201

    Nested Sequents for Quantified Modal Logics

    Full text link
    This paper studies nested sequents for quantified modal logics. In particular, it considers extensions of the propositional modal logics definable by the axioms D, T, B, 4, and 5 with varying, increasing, decreasing, and constant domains. Each calculus is proved to have good structural properties: weakening and contraction are height-preserving admissible and cut is (syntactically) admissible. Each calculus is shown to be equivalent to the corresponding axiomatic system and, thus, to be sound and complete. Finally, it is argued that the calculi are internal -- i.e., each sequent has a formula interpretation -- whenever the existence predicate is expressible in the language.Comment: accepted to TABLEAUX 202

    A theorem prover for Boolean BI

    Full text link
    corecore