This paper studies nested sequents for quantified modal logics. In
particular, it considers extensions of the propositional modal logics definable
by the axioms D, T, B, 4, and 5 with varying, increasing, decreasing, and
constant domains. Each calculus is proved to have good structural properties:
weakening and contraction are height-preserving admissible and cut is
(syntactically) admissible. Each calculus is shown to be equivalent to the
corresponding axiomatic system and, thus, to be sound and complete. Finally, it
is argued that the calculi are internal -- i.e., each sequent has a formula
interpretation -- whenever the existence predicate is expressible in the
language.Comment: accepted to TABLEAUX 202