148,972 research outputs found

    Generalized decomposition and cross entropy methods for many-objective optimization

    Get PDF
    Decomposition-based algorithms for multi-objective optimization problems have increased in popularity in the past decade. Although their convergence to the Pareto optimal front (PF) is in several instances superior to that of Pareto-based algorithms, the problem of selecting a way to distribute or guide these solutions in a high-dimensional space has not been explored. In this work, we introduce a novel concept which we call generalized decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying evolutionary algorithm toward specific regions of interest or the entire Pareto front with the desired distribution of Pareto optimal solutions. Additionally, it is shown that generalized decomposition simplifies many-objective problems by unifying the three performance objectives of multi-objective evolutionary algorithms – convergence to the PF, evenly distributed Pareto optimal solutions and coverage of the entire front – to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method (CE), is created to illustrate the benefits of the proposed concept for many objective problems. This choice of EDA also enables the test of the hypothesis that low-order statistics based EDAs can have comparable performance to more elaborate EDAs

    Spectral tensor-train decomposition

    Get PDF
    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT decomposition and analyze its properties. We obtain results on the convergence of the decomposition, revealing links between the regularity of the function, the dimension of the input space, and the TT ranks. We also show that the regularity of the target function is preserved by the univariate functions (i.e., the "cores") comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting \textit{spectral tensor-train decomposition} combines the favorable dimension-scaling of the TT decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \texttt{TT-DMRG-cross} to obtain the TT decomposition of tensors resulting from suitable discretizations of the target function. We assess the performance of the method on a range of numerical examples: a modifed set of Genz functions with dimension up to 100100, and functions with mixed Fourier modes or with local features. We observe significant improvements in performance over an anisotropic adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online.Comment: 33 pages, 19 figure

    Decomposition in general mathematical programming

    Get PDF
    In this paper a unifying framework is presented for the generalization of the decomposition methods originally developed by Benders (1962) and Dantzig and Wolfe (1960). These generalizations, called Variable Decomposition and Constraint Decomposition respectively, are based on the general duality theory developed by Tind and Wolsey. The framework presented is of a general nature since there are no restrictive conditions imposed on problem structure; moreover, inaccuracies and duality gaps that are encountered during computations are accounted for. The two decomposition methods are proven not to cycle if certain (fairly general) conditions are met. Furthermore, finite convergence can be ensured under the traditional finiteness conditions and asymptotic convergence can be guaranteed once certain continuity conditions are met. The obvious symmetry between both types of decomposition methods is explained by establishing a duality relation between the two, which extends a similar result in Linear Programming. A remaining asymmetry in the asymptotic convergence results is argued to be a direct consequence of a fundamental asymmetry that resides in the Tind-Wolsey duality theory. It can be shown that in case the latter asymmetry disappears, the former does too. Other decomposition techniques, such as Lagrangean Decomposition and Cross Decomposition, turn out to be captured by the general framework presented here as well

    Nonlocal Optimized Schwarz Methods for time-harmonic electromagnetics

    Full text link
    We introduce a new domain decomposition strategy for time harmonic Maxwell's equations that is valid in the case of automatically generated subdomain partitions with possible presence of cross-points. The convergence of the algorithm is guaranteed and we present a complete analysis of the matrix form of the method. The method involves transmission matrices responsible for imposing coupling between subdomains. We discuss the choice of such matrices, their construction and the impact of this choice on the convergence of the domain decomposition algorithm. Numerical results and algorithms are provided

    Three-Body Scattering without Partial Waves

    Full text link
    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. In its simplest form the Faddeev equation for identical bosons is a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. The elastic differential cross section, semi-exclusive d(N,N') cross sections and total cross sections of both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated based on a Malfliet-Tjon type potential, and the convergence of the multiple scattering series is investigated in every case. In general a truncation in the first or second order in the two-body t-matrix is quite insufficient.Comment: 3 pages, Oral Contribution to the 19th European Few-Body Conference, Groningen Aug. 23-27, 200

    Three-Body Elastic and Inelastic Scattering at Intermediate Energies

    Get PDF
    The Faddeev equation for three-body scattering at arbitrary energies is formulated in momentum space and directly solved in terms of momentum vectors without employing a partial wave decomposition. For identical bosons this results in a three-dimensional integral equation in five variables, magnitudes of relative momenta and angles. The cross sections for both elastic and breakup processes in the intermediate energy range up to about 1 GeV are calculated based on a Malfliet-Tjon type potential, and the convergence of the multiple scattering series is investigated.Comment: Talk at the 18th International IUPAP Conference on Few-Body Problems in Physics, Aug. 21-26, 2006, Santos, Brazi

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed
    • …
    corecore