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In this paper a unifying framework is presented for the generalization of the decomposition methods 
originally developed by Benders (1962) and Dantzig and Wolfe (1960). These generalizations, called 
Variable Decomposition and Constraint Decomposition respectively, are based on the general duality 
theory developed by Tind and Wolsey. The framework presented is of a general nature since there are 
no restrictive conditions imposed on problem structure; moreover, inaccuracies and duality gaps that 
are encountered during computations are accounted for. The two decomposition methods are proven 
not to cycle if certain (fairly general) conditions are met. Furthermore, finite convergence can be ensured 
under the traditional finiteness conditions and asymptotic convergence can be guaranteed once certain 
continuity conditions are met. The obvious symmetry between both types of decomposition methods is 
explained by establishing a duality relation between the two, which extends a similar result in Linear 
Programming. A remaining asymmetry in the asymptotic convergence results is argued to be a direct 
consequence of a fundamental asymmetry that resides in the Tind-Wolsey duality theory. It can be 
shown that in case the latter asymmetry disappears, the former does too. Other decomposition techniques, 
such as Lagrangean Decomposition and Cross Decomposition, turn out to be captured by the general 
framework presented here as well. 
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1. Introduction 

D e c o m p o s i t i o n  h a s  b e e n  r e c o g n i z e d  as  a f u n d a m e n t a l  t e c h n i q u e  in  o p t i m i z a t i o n  

e v e r  s i n c e  t h e  s e m i n a l  p a p e r s  o f  B e n d e r s  (1962)  a n d  D a n t z i g  a n d  W o l f e  (1960) .  

T h e  l i t e r a t u r e  a b o u n d s  w i t h  t h e o r e t i c a l  e x t e n s i o n s  o f  t h e s e  t w o  b a s i c  a p p r o a c h e s ,  

as we l l  as w i t h  r e p o r t s  o f  s u c c e s s f u l  a p p l i c a t i o n s  ( f o r  r e f e r e n c e s ,  see  F l i p p o ,  1991) .  

I n  t h i s  p a p e r ,  Variable a n d  Constraint Decomposition wil l  b e  i n t r o d u c e d  as p r o p e r  

g e n e r a l i z a t i o n s  o f  B e n d e r s  D e c o m p o s i t i o n  a n d  D a n t z i g - W o l f e  D e c o m p o s i t i o n  

r e s p e c t i v e l y .  I n  g e n e r a l i z i n g  t h e  l a t t e r  t w o  a p p r o a c h e s ,  a d u a l i t y  t h e o r y  is r e q u i r e d  
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that extends the one in Linear Programming; a general duality theory that fits this 
purpose and that is used in this paper is due to Tind and Wolsey (1981). 

Under minimal assumptions on problem structure, Variable and Constraint 
Decomposition turn out to include essentially all previous generalizations as special 
cases. In addition, our approach can cope with suboptimality in the primal and 
dual programs that are encountered during computations, as well as with the 
occurrence of duality gaps. Within our framework it is possible to establish for both 
decomposition techniques that intermediate primal and dual solutions will not be 
generated more than once during the solution process, and that finite convergence 
is assured under appropriate finiteness conditions. Moreover, asymptotic conver- 
gence (as well as asymptotic feasibility) for the Variable Decomposition Procedure 
can be established under fairly general continuity and stability conditions; for 

Constraint Decomposition a similar observation applies if, additionally, a finite 
parametrizability condition for the dual programs is met. This asymmetry between 
Variable and Constraint Decomposition is noteworthy in view of the strong relation 
between the two procedures; they will in fact be shown to be dual approaches. We 
shall argue that this asymmetry is indeed a direct consequence of a fundamental 
asymmetry that resides in the Tind-Wolsey duality theory on which our approach 

is based. Finally, it will be shown that several other decomposition techniques that 
have appeared in the literature, such as Lagrangean Decomposition and Cross 
Decomposition, are captured by the general framework presented here as well. 
Other relations to existing literature will be dealt with in the course of  the text; for 
a generalization and unification of Variable and Constraint Decomposition in a 

max-min setting, we refer to Burkard et al. (1985) and Tind (1988, 1990). 

2. Duality theory 

In this section we briefly recall the main concepts and results from the Tind-Wolsey 
duality theory (1981) that will be required below. Consider the following primal 

program: 

P: max f ( x )  
X 

s.t. G(x)~O, 

(1) 

(2) 

x ~ X ,  (3) 

with Xc__R ~, oe{<~,=}~, f : X ~ R u { ± o e }  and G : X - N  m. Here, G(x)oO is a 
shorthand notation for Gi(x)% 0 (i = 1, . . . ,  m), with % denoting either an equality 
(=)  or an inequality sign 0f the "less-than-or-equal" type (<~). The reason for 
introducing such notation is to account for the simultaneous occurrence of equalities 
and inequalities in a compact way. The value (or perturbation)function v:Nm-~ R u 
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{+@} is defined as 

sup{f  (x) I G(x)  ~ r, x ~ X }  if r c RHS, 
v(r) = x 

- ~  otherwise, 

with RHS = {r c R m [3X ~ X :  G(x)  ~ r} denoting the set of  feasible right-hand-sides. 
If P is regular, i.e. if its value v(O) is not equal to + ~ ,  and i f f ( x ) > ~ v ( O ) - e  for 
some feasible solution x and some e/> 0, then x is called an e-optimal solution to 
P. To describe the dual program D, we introduce the set of functions 

~ = { g : ~ - ~ u { + o o } l g ( r ) < ~ g ( r '  ) Vr, r '~RHS:  ro r'}, (4) 

and define 

D: min g(O) (5) 
g 

s.t. g(G(x ) )  >~f(x) Vx c X, (6) 

gco%. (7) 

Note that O% imposes a kind of monotonicity condition only with respect to the 
inequality constraints in (2). It is easily verified that g c o% satisfies (6) if and only 
if g(r) >1 v(r) Vr e ~m. Taking r = 0 one obtains weak duality, which states that every 
feasible dual solution yields an upper bound to the optimal value of the primal 
program. By observing that v itself is feasible for D, one obtains strong duality, 

which says that the optimal primal and dual objective values meet. Finally, by 
defining pO as the primal problem (1)-(3) with f ( x )  in (1) being replaced by 0 and 
applying weak and strong duality to pO and its dual D °, one obtains a proper 
generalization of the Farkas Lemma: 

3 x ~ X :  G(x)*O ¢~ h(0)~>0 Vhco%: [ h ( G ( x ) ) > ~ O V x c X ] .  (8) 

Clearly, the major drawback of this particular duality theory is the asymmetry 
between P and D, in that the primal solution space X is finite dimensional, whereas 
the dual solution space O% is not. This asymmetry is resolved by restricting O% to 
some finite dimensional subset, generally at the expense of introducing a strictly 
positive duality gap however (i.e. giving up strong duality). A typical example is 
restricting O% to the (finite dimensional) space of affine functions; in that case, 
Lagrangean duality is recovered, which properly generalizes Linear and Quadratic 

Programming duality. In addition to that, a one-to-one correspondence between dual 
variables and primal constraints is obtained (cf. Tind and Wolsey, 1981). Fortunately, 
it turns out that the latter property holds for the general framework as well; the 
following theorem is easily proven (Flippo, 1991) and will be useful in the sequel. 

Theorem 2.1 (Additively separable duality). Consider the dualprogram (5)-(7) and 
the set of  functions F = F1 +" • • +Fm c_ O% with 

Fi = {gi :N ~ R u {+co} I gi(ri) ~ g~(rl) Vri, r~ c ~: r~ %r~} 
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and with set and function addition being defined in the usual way. Assume that 
f ( x )  < +oo Vx ~ X and that P is regular. Then there is an optimal dual solution g* c F 
with g*(0) = g * ( 0 ) + -  - . + g * ( 0 )  = v(0) for some g* c Fi (i= 1 , . . . ,  m). [] 

Thus, without eliminating t he  asymmetry between P and D, one can at least 
associate a dual variable to each primal constraint under hardly any conditions on 
the primal program at all. 

3. Variable Decomposition 

We are now ready to introduce Variable Decomposition, one of the two main 
decomposition approaches and a direct generalization of techniques that have been 
proposed under names such as (Generalized) Benders Decomposition, Primal 
Decomposition and Resource Directive Decomposition. Let us assume P can be written 

as: 

P: max f (x ,  y) (9) 
x , y  

s.t. G(x,y)~O, (10) 

(x,y)c u n ( x x  Y), (11) 

with X c_ R",, yc_N"2, Uc_N" (n~+nz=n),o6{<~, =}re, f :  U c ~ ( X x  Y ) ~ R u  {+oo}, 

and G:  U n (X x Y ) ~  Rm. For reasons to be explained later (see the paragraph 
following (26)-(29) and the second remark after the algorithmic description of the 

Variable Decomposition Procedure), we also assume that: 

(x, y) is feasible for P 

3 y ' c  Y: [ (x ,y ' )  is feasible for P and f (x , y ' )>-oo] .  (12) 

Note that (12) is redundant in case the objective function f in (9) is real-valued; 
the reason for allowing f to range to the extended reals is to account for the situation 
in which f itself is the value function of some (parametric) optimization problem. 
As a methodology, Variable Decomposition is captured by the notions of projection, 
dualization, outer approximation and relaxation (cf. Geoitrion, 1972a). Projection 
means that the joint optimization over the x and y variables in (9)-(11) is replaced 
with a nested optimization; by setting x = ff ~ X we obtain a family of parametrized 

primal subprograms 

P (X): max f ( x , y )  (13) 
x , y  

s.t. G(x,y)•O, (14) 

x=~, (15) 

(x, y) c U c~ ( 2  x Y), (16) 
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where _~ is any superset of X that is independent of  ~. (For an example where a 

choice of  )~ different from X is fruitful, we refer to Flippo (199t).) The original 
program P may then be written as 

max ~ (P()~)) (17) 
0~ 

s.t. ¢(pO(g)) ~> O, (18) 

g c X .  (19) 

The notation p( .  ) is introduced to denote the optimal objective function value of 
a given optimization problem. As in Section 2, pO(ff) is an optimization problem 
that is obtained from P(~) by replacing the objective function f with the zero- 
function. Note that (18) ensures restriction to those )7 c X that can be extended to 
a feasible solution (g,)7) of (9)-(11) (cf. (8)). Dualization of P(~) now yields the 
dual subprograms 

D(~): rain g(0, g) (20) 
g 

s.t. g(G(x,y),x)>~f(x,y) V(x ,y)~  U ~ ( J ( x  V), (21) 

g c 0%. (22) 

The dual solution space o ~ is defined similarly as in Section 2: 

o~ = {g: ~m+°,--, R ~ {+oo}1 

g(r,x)<~g(r',x ') V(r,x), (r',x')e RHS: ror',x= x'}, 

where RHS is the set of feasible right-hand-sides, here defined as 

RHS={(r ,x ' ) c~+° , [3(x ,  y )c  U ~ ( 2 " ×  Y): [ C(x, y)or, x= x']}. 

Thanks to strong duality (cf. Section 2), (17)-(19) can now be replaced by 

max q~(D(x)) (23) 
x 

s.t. ~ (D°(x))/> 0, (24) 

x c X, (25) 

where D°(x) is the dual to P°(x). (Note that we omitted the bar overlining the 
x-variables here.) A trivial reformulation of (23)-(25) renders 

0 m a x  

x, 0 

s.t. -q~(D(x)) + 0 ~< 0, 

-q~(D°(x)) ~< 0, 

(x, O)cXx~ .  
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NOW, if we let A denote the feasible set of D(x) defined by (21)-(22) and similarly, 
if we let A o denote the feasible set of D°(x), then outer approximation yields the 
master program 

VD(A, A°): max 
x,O 

s.t. 

0 (26) 

-g(0 ,  x)+0<~0 Vg~A, (27) 

-h(O,x)<~O Vh~A °, (28) 

(x, O)EX×R, (29) 

which, under (12), is clearly still equivalent to P. Here, the constraints in a can be 
thought of as value cuts (cf. (17)) and the constraints in A ° as feasibility cuts (cf. (18)). 

In (26)-(29), the y-variables have been eliminated at the expense of a significant 
increase in the number of constraints. Thus, one would typically solve VD(A, A °) 
by relaxation, i.e. by considering a relaxed master program VD(A, ~0) for appropri- 
ately chosen subsets ~_cA and A°c_A°. It is easily verified that VD(. ,  .) may 
provide arbitrarily tight upper bounds and P ( . )  arbitrarily tight lower bounds on q~ (P). 
Thus, one naturally arrives at the notion of an iterative procedure in which the 
relaxed master programs VD(,~, ~o) generate candidate £-values, which, through 
D(ff) or D°(ff), yield value or feasibility cuts that can be used to extend A or ~o. 
The following lemma summarizes the essential ingredients for such a procedure. 

Lemma 3.1. Assume that q~(VD(z[, z~°)) <+0o. 
(a) I f  VD(A, z[ °) is infeasible, then so is P. 
(b) I f  (Y~, if) is feasible for VD(,~, zl°), then 

• ~(P(X)) < ~¢,  3g ~ A\~:  -g(0 ,  ~) + if> 0, 
• P(g) is infeasibleC:>3h~ A°\A°: -/~(0, 2) > 0. 

(c) I f (Y ,  O) is el-optimal for VD(A, ,~0), )7 is e2-0ptimal for P(ff), and ~, c A is 
e3-0ptimal for D(~), then (,2,)7) is an (el+ e2 + e3)-optimal solution for P. 

Proof. The proof of (a) is trivial, and (b) follows from strong duality, from the fact 
that -g(0 ,  if) + ff~< 0 Vg ~ z~ and -h(0 ,  g) ~< 0 Vh ~ zl °, and from the generalized 
Farkas Lemma (cf. (8)). As to (c), 

q~(P) ~ 0+ e, ~ g(0, )~) + el ~< qo(D(.~)) + el + e3 

=q)(P(~))+(e,+e3)<~f('Y, f i )+(e,+e2+e3).  [] 

We are now in a position to describe the Variable Decomposition Procedure. Let 
the superscript k denote an iteration index, and let UB k, LB k and (x in°'k, yi,O.k) be 
the values of the best upper bound on ~(P), best lower bound on ~(P), and best 
feasible solution to P found so far. 



O.E. Flippo, A.H.G. Rinnooy Kan / Decomposition in general mathematical programming 367 

Variable Decomposition Procedure. 
Step O. Initialization phase. 

k:= 1; UB°: = +co; LB°: = -co ;  
Choose  zik_c Zl and a°'kc_ a ° such that ~(VD(A k, d ° ' k ) ) <  +co; 

Step 1. Master program phase. 
if ~0(VD (A k, A °'k) ) = - o o  then stop [P is infeasible] 
else begin 

Choose  (x k, O k, ekl) such that  elk/> 0 and (x k, O k) is elk-optimal for  VD(A k, A0,k); 
UB k := min{UB k-l, O k + e~} 

end; 
Step 2. Subprogram phase. 

if q~(p(xk))=--CO then begin 
e~:= 0; k e3 := 0; LB k : =  LBk-1; 

Choose  h k c A ° such that - hk (0 ,  x k) > 0; 
Choose  (zik+l, ziO,k+l) such that zik c_ a k+~ _ a and ziO,k W {h k} c_ ziO,k+l _ ZIO 

end else begin 
Choose  (yg, e~) such that  k yg e2/> 0 and is ezCoptimal for  p(xk);  
Choose  (gk, e~) such that e~/> 0 and gk is e3Coptimal for D(xg);  
Choose  (A g+~, A °'g+l) such that zl g u {gk} _c a g+l _c a and a °'k _c a °,g+l c_ A°; 
LB k := max{LBk- l , f ( x  k, yg)}; 
if LB g > LB g-1 then (x i~c'k, yinO,k) := (x g, yg) 

else (x inc'g, yinC, k) := (XinC,k-1, yinC, k-l)  

end; 
Step 3. Optimality verification. 

Choose 
rz inc,k yinC,k) if UB k -  LBk<~ eo k then stop / tx  , is eok-optimal for  P] 

else k := k + 1; return to Step 1. 

The  following commen t s  may  be helpful. 

• Finding initial sets A 1 and zio.~ with ~(VD(A 1, A0,1)) < -[-O0 may be a non-trivial 
task. I f  such sets do not exist then clearly q~(P) = +co. 

• In the subprogram phase h k exists, since it is implied by (8) and (12) that 
q~(P(xk)) = -co  ¢=> go(p°(xk)) = -co.  

• The inaccuracy parameters  e~ (i = 1, 2, 3) may  vary between iterations and need 
not  be specified pr ior  to i teration k. 

• In the optimali ty verification phase,  (x in°'k, y~nC,k) is (UB k -  LBk)-opt imal  for  
P because  0 ~< ~o(P) - f ( x  in°'k, yino,k) ~< UB k _ LB k. This solution is only considered 
accurate enough if it meets the bound  e0 k on the overall inaccuracy.  

• This f ramework not  only allows for inaccuracies during the iterative process,  
but  also for  dual i ty  gaps between the pr imal  and dual  subprograms,  since these gaps 

k are in fact part  of  the inaccuracies e3 of  the dual subprogram solutions. 
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Before relating the above procedure to the existing literature, we first establish a 
few of its crucial properties. 

Theorem 3.1 (Non-repetit ion of complete solutions). 
(a) In the master program phase no solution (x k, O k) will be generated more than 

once. 

(b) In the subprogram phase no solution h k will be generated more than once, and 

as soon as a solution g k is generated for  a second time, the algorithm will terminate. 

Proof. (a) If  ~ (P(xk)) > -co then gk(O, x k) - e~ - e~ <~f(x k, yk) <~ LB k. Since UB k ~< 

0 k + e l  k, we have that (Ok+e~l) - (gk(O,  x k ) - e ~ - e ~ ) > ~ U B k - L B  k. Now, if the 
algorithm does not terminate at iteration k, then UB k - L B k >  e0 k, which implies 
that --gk(O, X k) + 0k> 0. Adding gk to A k+l ensures that (x k, 0 k) will not be con- 

sidered in any subsequent iteration (cf. (27)). Similarly, if ¢ ( P ( x k ) ) = - o o  then 

adding h k to A °'k÷l yields that for any value of 0, (x k, 0) will not be generated in 
any subsequent iteration (cf. (28)). 

(b) If ~o(P(xk)) > -oo then gk ~ ~ k implies that -gk(0,  x k) + 0 k <~ O. If, in addition, 
UB k - LB k > e~, then, as in (a), -gk(0,  x k) + 0 k > 0, which is a contradiction. There- 
fore, UB k - LB k ~< eo k, so the procedure will stop. In a similar way, if q~(P(xk)) = -oo 

then h k 6 3  °'k would imply that --hk(O, xk)<~O, contradicting the fact that 
-hk(0 ,  xk ) >  0. [~ 

It is worth noting the essential role played in the above proof by our (intuitively 
reasonable) assumption that the overall inaccuracy eo k is at least equal to the sum 

of the inaccuracies in the composing parts of the procedure. 

Theorem 3.2 (Non-repetition of subprograms). I f for  all k satisfying ~ (P(xk)) > -co, 
k eo >t e~ +maxl<_j<_k{e{ + e J3}, then the procedure terminates as soon as a solution x k 

is generated for the second time. 

Proof. If  x ~= x k for some 1> k, then we must have that q~(P(xt)) -- p (P (x k ) )>  -co 
(see the proof  of Theorem 3.1(a)), implying that -gk(0,  x t) + 0t<~ 0 (cf. (27)). Hence, 

01<~gk(O, x l )=gk(O,  xk)<~gk(O, x k ) +  t t k E 0 - -  e 1 - -  ( e  2 -}- E 'k) .  ( 3 0 )  

In addition 

f ( x  k, yk) + e~ >~ ~ (P(xk)) = ~p (D(xk)) ~> gk(0, X k) -- e~. (31) 

Together, (30) and (31) imply that 

UB 1 _ LB l ~< UB t _ LB k ~ (0 r + ell) _ f ( x  k, yk) 

<~ ( Ol + e ' l ) - - (gk(O,  x k ) - -  e~--  ek3) ~ et o 

and the procedure will stop. [] 
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Theorem 3.3 (Finite convergence). I f  for all k with q~(P(xk))> -oo, 

eok~>e~+ max {e~+e~}, 
1 <~j<~k 

then the procedure terminates in a finite number of  steps if  at least one of  the following 

two conditions is met: 
(a) all x k generated belong to a finite subset of  X ;  
(b) all gk and h k generated belong to finite subsets of  A and A °. [] 

The proof  of Theorem 3.3 is trivially obtained from its two predecessors. Thus, 
the general procedure has the properties typically associated with its special cases. 
As we shall see below, its asymptotic convergence can also be guaranteed, once 
certain conditions are verified. 

However, let us  first draw attention to a crucial property of the dual subprograms 
D(~) and D°(E), which is that their feasible sets do not depend on ft. A moment's 

reflection shows that if that property did not hold, then A and A ° in (27)-(28) would 

depend on x, and as a consequence, serious computational difficulties would arise 
in solving the relaxed master programs. Now, if the dual subprograms are only 

allowed to depend on ff through their objective functions, then the primal sub- 
programs P(ff) and pO(~) are only allowed to depend on $ through their right-hand- 
sides. This observation explains the appearance of (15) in P(~). It is instructive to 
note that generalizations of Benders Decomposition which do not comply with this 
observation frequently have to include additional regularity conditions as a result. 

For instance, Lazimy (1982, 1985) imposes unnecessarily restrictive conditions on 
the Convex Quadratic Programs considered (see Flippo and Rinnooy Kan, 1990), 
Geoffrion (1972b) relies on a qualitative "Property P"  to escape from the same 

computational difficulties, and Burkard et al. (1985) restrict themselves to separable 
programs for which primal subprograms of the required form are easily obtained 
without the addition of  constraints like x = ft. 

It is not difficult to see that our approach properly generalizes the original Benders 
Decomposition (cf. Benders, 1962) and the aforementioned generalizations by 
Geoffrion (1972b) and Lazimy (1982, 1985). A comparable generalization by Wolsey 
(1981) can be seen to lead to a master program identical to ours, but with many 
redundant constraints removed; since these constraints are not necessarily redundant 

in relaxations of  the master program, it is not clear beforehand whether removing 
these is fruitful. In the algebraic optimization approach ofBurkard et al. ( 1985 ), inac- 
curacies and duality gaps have not (and could not have) been accommodated, due 
to the absence of a metric space. Indeed, incorporation of these is a particularly 
attractive feature, especially since computational considerations sometimes dictate 
such severe restrictions on the dual solution space f f  that strong duality is no longer 
assured (e.g. Rouhani et al., 1985). For a more detailed account on the relation with 
existing literature we refer to Flippo (1991). 

We now return to the issue of  asymptotic convergence. Let us first focus on the 
sequence of feasible solutions x k ~ FSx = {x ~ X I~p(P(x)) > -co} as generated by 
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the algorithm, and let us view the generation of this feasible sequence { x k l k  c I c_ N} 
as the result of repeated application of the composed point-to-set map a o fl, where 

a : A - e ~ X X R  

with a (g)  = {(x, O ) c X x R I - g ( O , x ) + O < ~ O }  

and 

/3 :FSx x E+-+-+ n 

with/3(x, e3) = {g c k [g is e3-optimal for D(x)}. 

Of course, if feasibility rather than value cuts have to be added to a relaxed master 
program (a process that can be described similarly in terms of point-to-set maps), 
then the generation of the sequence of feasible solutions is (temporarily) interrupted. 

Let us assume that [I[ = +o% i.e. that the procedure continues to generate feasible 
solutions (x k, yk), and that P is regular. To ensure asymptotic convergence, we shall 
require oe o fl to be a closed point-to-set map (cf. Zangwill, 1969). In addition to 
this, we shall have to impose certain continuity and compactness conditions as well. 

Theorem 3.4 (Asymptotic convergence). Assume that P is regular and that [II = +oo. 

Furthermore, assume that 

• U ~ ( X  × Y)  is compact; 

• f i s  upper semi-continuous on Uc~ (X x Y); 
• Gi is lower semi-continuous on U n ( X x  Y)  in the case that %E{<~}, and 

continuous on U n ( X  × Y)  in the case that % ~ {=}; 
• ~ (P( - ) )  is lower semi-continuous on FSx; 
• V k ~  I: e~c E j ~  R+ with Ei compact ( i=  1, 2, 3); 

• a o ~ is a closed point-to-set map on FSx x E3. 
Then the Variable Decomposition Procedure converges asymptotically, in the sense 

that: 
(a) every accumulation point o f  (xk)1 is a lim sup(e~+ek3)-optimal solution to 

(17)-(19); 
(b) every accumulation point of  (x k, yk)x is a lim sup(e~ + e~ + e~)-optimal solution 

to P; 
(c) every accumulation point o f  (xin°'k)~ is a lim sup(ek+ e2+k e~)-optimal solution 

to (17)-(19), and every accumulation point o f  (x i~'k, yi~c'k)1 is a lim sup~e~+ e~+ 

e~)-optimal solution to P; 
(d) 0 <~ lim(UB k - LB k) ~< lim sup(el k + e k + e3k). 

Proof. (a) Let x°°e FSx be any accumulation point. It is easy to see that all O k lie 
in some compact set, and hence, there is a subsequence (p(k))1 of I such that 

~k~ ~k~) = (xOO, o ~, ~7, ~7) lim(x p(k), 0 p(k), el , 



O.E. Flippo, A.H.G. Rinnooy Kan / Decomposition in general mathematical programming 371 

for some (0 ~, e] °, e3) ~ x E1 x E3. Since (x p(k+l), 0 p(k+l)) e (OL o fl)(X p<k), eP(k)), 
the closedness of a o fl implies that (x ~, 0°°)6 (a  o f i)(x °°, e~). Hence, there is an 
e~-optimal solution gOO to D(x ~) such that 

0 ~ -  8 3 ~  g°(0, x ~) - e3 ~< g~(D(x°°)) = ¢P (P(x°°)) ~< q~(P). (32) 

Since clearly 0~+ 81/> ~p(P) (that inequality being satisfied for every (0 p(k), e ~(k))), 

we obtain the required inequality 

•(P)  - e ~  - e ~  < 0 ° ° -  83<~ ~o (P(x°°) )  <~ •(P).  (33) 

(b) As in (a) we consider an accumulation point and a subsequence converging 
to it. Then upper semi-continuity o f f ,  lower semi-continuity of ~p(P(. )) and (33) 
imply that 

f(xOO, yOO) >~ lim s u p f ( x  p(k), yp(k)) ~ lim sup(q~ (P(xP(k))) - e 2 p(k)) 

/> lim inf q~(P(xr'(k))) -- e°~>~ ~ (P(x~)) - e~ 

/> ~(p)  - ~ ? -  ~ -  ~ 

~> ~ ( P ) - l i m  sup(e~ k k + 8~ + 8~). (34) 

(c) Once again we consider an accumulation point, and a subsequence converging 
to it. From (34), the upper semi-continuity o f f  and, by definition o f / ,  the feasibility 
of (x i . . . .  , y~ . . . .  ) we deduce that 

~p (p(x i . . . .  )) >~ f ( x  i . . . .  , yi . . . .  ) ~> lira sup  f ( x  i'~c'p(k), yinC, p(k)) 

> ~ l i m s u p f ( x P ( k ) , y p ( k ) ) ~ q ~ ( p )  • k k k - h m  sup(e1 + 82 + 83). 

(d) Due to monotonicity both LB k and UB k converge to, say LB °° and UB °° 
respectively. As in (34) we deduce that 

LB°°~ > l im s u p f ( x  p(k), yp(k)) >! ¢p (p(xOO)) _ e~. 

Since UB p(k)<~ 0 p(k)+ e f(k) we also deduce that UB ~ ~< 0°~+ e~ <~ ¢p (P(x~)) + e~+  e3 
(cf. (32)). Combining these two inequalities yields the result desired. [] 

We note that Theorem 3.4(d) implies that, if eg is chosen to exceed k k 8~+e2+83  k 

by a fixed, strictly positive amount independent of k, convergence to an 80k-optimal 
solution can be guaranteed in af in i t e  number of steps as soon as the procedure will 
no longer be interrupted by the generation of feasibility cuts. 

Although the assumptions of Theorem 3.4 may appear to be fairly restrictive, it 
can be argued that they are essentially the minimal ones under which asymptotic 
convergence can reasonably be expected. That is certainly the case for the compact- 
ness assumptions and for the upper and (lower semi-) continuity of f and G~ 
respectively (i = 1 , . . . ,  m). The lower semi-continuity of q~(P(" )), which is a much 
more restrictive assumption (see e.g. Flippo and Minoux, 1989), is necessitated by 
the fact that, on the one hand, Variable Decomposition in fact tries to solve (17)-(19), 
and on the other hand, the commonly used notion of asymptotic convergence is 
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meaningless without lower semi-continuity of the objective function because in the 
absence of this lower semi-continuity, asymptotic convergence to an optimal solution 

does not necessarily imply asymptotic convergence to the optimal objectivefi~nction 

value. Finally, the closedness condition on a o/3 is more or less standard ever since 
it was identified by Zangwill (1969) as a crucial ingredient for general asymptotic 
convergence to hold. 

It is natural to explore next what can be said about convergence if a finitely 
parametrizable representation of the dual space is available. Roughly speaking, this 
means that the relevant dual solutions g c A are fully characterized by only a finite 
number of parameters (e.g. belong to some finite dimensional functional space). 
Finite parametrizabitity is important since without it there is little hope of computing 
(optimal) dual solutions at all. 

Theorem 3.5 (Closedness of o~ o/3). Suppose that X is closed and q~(P(. )) is upper 
semi-continuous on FSx. In addition, let there be a non-empty and compact set T c_ R ~ 

(T6N) and function w:TxNm+nL-oEu{+oo} which is continuous on T x  

{(r, x)} V(r, x) c RHS and on T x {0} × FSx, which is upper semi-continuous on T x 
{0} x X, and which satisfies 

V(x, 8'3) c FS X x E3: [(z, 0) c (0~ o/3)(x, 8.3) 

~ 3 t  ~ T: w(t, ", " ) c  /3(x, e3) A (z, O) ~ c~(w(t, . , . ) ) ] .  

Then c~ o/3 is closed on FSx x E3. 

Proof. Let (x k, e3k)~c FSx x E  3 converge to (x ~, e 3 ) c F S x  xE3 and let (z k, ok)~ 

converge to (z ~, 0~), where (z k, O k) c (a  o/3)(x k, e~) Vk~N. We have to prove that 
(zL 0~)c (,~ o/3)(xL 8.3). 

We know that V k c N ,  3tk  E T: - w ( t  k,O, Zk)+Ok<~O. T is compact, so without 
loss of generality we may assume that lira t k = t ~ ~ T. The (upper semi-) continuity 
assumptions on w imply that - w ( t  °~, O, z~ )+  0~<~0 and that w(t  °°, ., • ) c A. Now, 
w(t  k, ., • ) is 8.~-optimat for D(xk), which, combined with the continuity of w and 
the upper semi-continuity of p (P ( . ) ) ,  implies that w(t  °~, ., .) is e3-optimal for 
D(x~). This concludes the proof. [] 

We can use a similar approach to investigate the case in which the algorithm is 
only able to generate a finite number of feasible solutions from FSx (i.e. Ill < +co). 
If the feasible set of D o can be restricted to finitely parametrizable solutions, then 
under appropriate assumptions one can show that every accumulation point of 
(xk)~\l belongs to FSx, so that at least asymptotic feasibility is assured (for details, 
see Flippo, 1991). Thus, the possibility of finite parametrization, a notion that does 
not necessarily require the usual convexity properties, enables strong properties of 
convergence to be established in a natural way. 
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4. Constraint Decomposition 

P(X): max 
x 

The Constraint Decomposition approach that we are about to introduce next, 
generalizes Dantzig-Wolfe Decomposition in much the same way that Variable 
Decomposition generalizes Benders's original work. The idea underlying the 
approach is also known as Column Generation, Generalized Linear Programming, 
(Generalized) Dantzig- Wolfe Decomposition, Dual Decomposition and Price Direc- 
tive Decomposition. As a methodology, Constraint Decomposition is captured by 
the notions of Inner Approximation and Relaxation (cf. Geoffrion, 1972a). Let us 
consider the original primal program (1)-(3) under the additional assumption that 

Vx • X: f ( x )  < +oo. (35) 

For all J~ G X the following dual pair of programs are defined 

f (x )  (36) 

s.t. 

D(X): min 
g 

G(x)oO, (37) 

x~3?, (38) 

g(0) (39) 

s.t. g(G(x))>~f(x) Vx~S2, (40) 

g~F, (41) 

where F consists of all functions in ~ with the exception of those that can take on 
the value -ec  (cf. (4)); this does not affect strong duality between P(J() and D(J() ,  
provided the value of the former is strictly greater than -co (see Flippo, 1991). The 
reason for introducing (35) and (41) is to ensure that f ( x )  -g (G(x ) ) ,  an expression 
that will occur frequently in this section, is well-defined for every x ~ X and g 6 F. 

P(X)  and D(X)  are clearly equivalent to P and D, and are called the primal and 
dual master program respectively; P(X) and D(J()  are the restricted primal and 
relaxed dual master programs respectively. The latter programs provide (arbitrarily 
tight) lower bounds on go(P). For given ~E F, an upper bound will be provided 
through a generalized version of Lagrangean Relaxation" 

CD(#): max f(x)+~,(O)-~,(G(x)) 
x 

s.t. x c X .  

Indeed, if ~ ~ F and ~(0) c ~ then 

go (CD(~)) = sup{f  (x) + ~(0) - ~ ( G ( x ) ) l x  ~ X} 
x 

~> sup{f  (x) + ~(0) - ~ (G(x) )  I G(x) o O, x c X} 
x 

>1 sup{f(x) lG(x ) 00, x ~ X} = go(P). 
x 
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These upper  bounds  can also be as tight as desired because if g is s -opt imal  for 

D, it follows that (cf. (40)) 

q~ (CD(~))  = ~(0) + sup{ / (x )  - ~ ( G ( x ) ) l x  ~ X} 
x 

~ g(0) ~ q~(D)+ e = ~p(P) + e. 

It is now natural to consider  an iterative procedure  in which the relaxed dual master  

programs D(37) generate candidate  ~'s which, th rough  CD(t~), yield improvements  

to Y?. We describe this Constraint  Decompos i t ion  Procedure now, using the same 

nota t ion as in Section 3. 

Constraint Decomposition Procedure. 
Step O. Initialization phase. 

k := 1, UB ° := +oe; LB ° := -co ;  

Choose  Xk_c X such that ~ ( P ( X k ) ) > - o e ;  

Step 1. Master program phase. 
if {0 ( P ( X  k) ) = +Go then stop [~o (P )  = + ~ ]  

else begin 
Choose  (x k, elk) such that e ~ > 0  and x k is e~-optimal for P(Xk) ;  

Choose  (gk, s~) such that e2k~>0 and gk is e~-optimal for D ( X k ) ;  

LB k := max{LBk-l ,  f (xk)};  
if LB k > LB k l then x inc'k := x k else x i~°'k := x inc'k-1 

end; 
Step 2. Subprogram phase. 

if ~p(CD(gk))= + ~  then begin 
k .  e3 .= 0; UB k := UB k 1 

Choose  z k ~ X such that f ( z  k) + gk(O) - gk(G(zk)) > gk(0); 

Choose  X k+~ such that X k u {z k} ___ X k+~ _c X 

end else begin 
k~ Z k Choose  (z k, s~) such that e 3 ~ 0  and is s~-opt imal  for CD(gk) ;  

UB k := min{UBk-~,f(zk)+gk(O) --gk(G(zk))+ S3k}; 

Choose  X k+~ such that X kU{zk}_c X k+~c__X 

end; 
Step 3. Optimality verification. 

Choose  so k ~> s ~+ s~ + s3k; 
if UB k - LB k ~< eo k then stop [x ~°'k is eoCoptimal for P] 

else k := k + 1; return to 1. 

A few comments  are in order. 

• Finding an initial X 1 ~ X for which ~(P(X1))  > -oe  may be a non-trivial task. 

I f  no such set exists then clearly q~(P)=-oe .  
• Since f(zk)+gk(O)--gk(G(zk))+S~ is an upper  bound  on ~ (CD(gk) ) ,  it is 

also one on ~(P).  
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• The inaccuracy parameters e~ (i --- 1, 2, 3) may vary between iterations and need 

not be specified prior to iteration k. 
• In the optimality verification phase, x ~n°'k is (UB k - LBk)-optimal for P because 

0 ~  p ( P ) - - f ( x  inc'k) ~ UB k -  LB k. Termination occurs if the bound eo k on the overall 

inaccuracy is met. 
• Optimality verification in this procedure is essentially verification of dual 

optimality. To see why, consider the most recent improvement in the upper bound 

up until iteration k (say, in iteration j <~ k) and define ~ by 

g,(" ) = g J(. ) + f ( z  j) - gJ (G(zJ) )  + e J3. 

Note that UB j-1 > U B J = U B  k__ 4(0). Now, e~-optimality of z j can easily be seen 
to imply that f ( x ) -~ , (G(x ) )<~  0 Vx  ~ X,  and it follows readily that ff is feasible for 
D. Furthermore, ~ ( 0 ) - ~ ( D ) < ~ U B k - L B  k, so UBk-LBk<~eg implies that ff is 
e0k-optimal for D. 

• As in the previous section, this framework allows for inaccuracies during the 
iterative process, as well as for duality gaps between the primal and dual master 
programs that are encountered during the solution procedure, since these gaps are 
in fact part of the inaccuracies e2 k of  the relaxed dual master program solutions. 

As in the case of Variable Decomposition, we easily obtain non-repetition and 
finite convergence under appropriate assumptions. 

Theorem 4.1 (Non-repetition of complete solutions). 
(a) In the master program phase no solution gk will be generated more than once. 
(b) As  soon as a solution z k is generated for  a second time, the algorithm will 

terminate. 

Proof. (a) To prove the result, it suffices to establish that (cf. (40)) 

f ( z  k) - gk( G(zk )  ) > 0. (42) 

If  q~(CD(gk)) = +oo, (42) follows trivially. Else, 

( f ( z  k) + gk(O) - g k ( O ( z k ) )  + ek3) -- (gk(0) -- el k -- e~) 

~> UB k - f ( x  k) >1 UB k - LB k. (43) 

If the right-hand side of (43) is strictly larger than eo k, then (42) follows immediately; 
if not, the algorithm terminates anyway. 

(b) If  z I= z k for some l >  k, then (cf. (40)) 

f ( z  t) = f ( z  k) <~ g t (G( zk ) )  = g t (G(z l ) )  

and so, in view of the argument under (a), UB t - L B  t cannot be strictly larger 
than eL. [] 
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To establish the equivalent of  Theorem 3.2, let us call two functions g and g '  
essentially identical if their difference is a constant. Clearly, CD(g)  is then equivalent 
to CD(g ' ) .  

Theorem 4.2 (Non-repetit ion of subprograms).  Assume that a real-valued upper bound 
has been obtained at iteration ko,and thatfrom that iteration onwards, z k is chosen so 
as to ensure that f ( z  k) + gk(O) - gk(G(zk))  >~ UB k i f  q~(CD(gk)) = +oo, and e~ >~ 

k 
el + ezk+maxk0~j~k{e~} / f p ( C D ( g k ) )  < +co. Then the procedure terminates if  a sol- 
ution gk is generated which is essentially identical to a previously generated solution 
gJ (k>j>~ko). 

Proof. We know that z j ~ X  k, implying that f(zJ)+gk(O)--gk(G(zJ))<~gk(O) 
(cf. (40)). Moreover, if gJ is essentially identical to gk, then gJ(O)-gJ(G(zJ) )= 
gk(O)--gk(G(zJ)). I f  q~(CD(gJ)) = ~(CD(gk) )  = +o0, the above two statements 
imply that 

UB k _ LB k ~< UB j - f ( x  k) 

<~(f(zJ)+gJ(O)--gJ(G(zJ)))--(gk(O)--ekl--e~)<~e~ (44) 

and the procedure terminates after iteration k. On the other hand, if ~ ( C D ( g J ) ) =  

~(CD(gk) )  < +oe, then the proof  is similar, provided el is incorporated in (44) from 
the second inequality onwards. [] 

Theorem 4.3 (Finite convergence). The procedure terminates in a finite number of 
steps if at least one of the following two conditions is met: 

(a) all z k generated belong to a finite subset of X;  
(b) the assumptions from Theorem 4.2 apply and, in addition, all g k generated are 

essentially equivalent to a member of a finite subset ofF. [] 

The proof  of Theorem 4.3 trivially follows from its two predecessors. It is not 

difficult to see that Dantzig-Wolfe Decomposi t ion (1960) for linear programs, as 
well as its extension in Dantzig (1963) to convex ones, are both subsumed by the 

above approach.  In the former LP approach,  X is a polyhedral set and 32 corresponds 
to the set of  all convex combinations of a subset of all the extreme points of  X plus 
the set of  all non-negative combinations of a subset of  all the extreme rays of  X 
("plus"  in the sense of set addition). In the later extension where X is a general 

convex set, J(  is chosen to be some finite subset of  X and the dual solution space 
F is restricted to the set of  affine functions only. The relaxed dual master programs 
then turn out to be linear programs, so that it is only natural for their LP duals to 
replace the initial restricted primal master programs (a process which is also known 
as convexification; cf. Magnanti  et al., 1976). In Burkard et al. (1985) an algebraic 
extension of Constraint Decomposit ion is discussed. The additional generality of 
their framework is due to the fact that the primal spaces are not required to be 
metric spaces. A consequence of this is that in their framework inaccuracies and 



O.E. Flippo, A.H.G. Rinnooy Kan / Decomposition in general mathematical programming 377 

duality gaps are not accounted for, and an asymptotic convergence result like 
Theorem 4.4 is absent. For more details we refer to Flippo (1991). 

The case covered by Dantzig (1963) once again illustrates the crucial role played 
by f inite parametrization. If, indeed, we assume that D()() allows such finite para- 
metrization, asymptotic convergence is guaranteed without any finiteness conditions 
at all. 

Theorem 4.4 (Asymptotic convergence). A s s u m e  that 

• P is regular; 

• X is compact; 

• f a n d  G are continuous on X ;  

• Vk: e~ • E~ ~ ~+ with E~ compact ( i=  1, 2, 3); 
• there is a non-empty and compact set T ~ ~ ('r ~ N) and a function w: T x ~'~ 

R w { : ~ }  which is continuous and real-valued on T x RHS, such that w(t,  • ) e 1" V t  ~ T 
and such that i f  g k is generated in the masterprogram phase, then B t k e T: w( t k, • ) = g k. 

Then the Constraint Decomposition Procedure converges asymptotically, in the sense 

that 

(a) for  every accumulation point t °~ o f  ( tk)~, w( t~, • ) + e ~ is an ( e 2 + e ~)-optimal 

solution for  D(X) for  some accumulation point (e2 ~,  e3)  o f  (ek2, 63)~;k 
(b) 

to P; 
(c) 

to P; 
(d) 

k k k . every accumulation point o f  (xk)~ is a lira sup(el + e2 -4- e3)-opttmal solution 

every accumulation point o f  (xi~C'~)~ is a lim sup(e~ + e~+ ek3)-optimal solution 

0 ~< lim(UB k - LB k) <~ lim sup(e~ + e~ + e3k). 

Proof. By way of preliminary observation, let us note that under (35), (41) and the 
continuity and compactness conditions of the theorem, all CD(gk)'s are regular 
programs. 

(a) Let t ° be any accumulation point of (tk)~. Define the function gO= w(t  ~, . ), 

and consider the subsequence ( p ( k ) ) ~  for which 

l im( t p(k>, e p(k> , eP3 <k~ , z p~k~) = ( t ~, e~ ,  e3 ,  z ~) 

for some (e2, e~, z ~) c E2 x E 3 x g.  Now, eP<kLoptimality of z p(k) implies that 

V x  e X :  f ( x )  - w( t  p(k), G ( x ) )  <~f(z p(k>) - w( t  p(k>, G(zP(k>)) + e p(k) 

and, since this inequality carries over to the limit, z 0o is e T-optimal for CD (w (t %. ) ). 
Also, zP(k>e X v(k+Z), so (cf. (40)) 

w(t  p(k+l), G(zP(k>)) >~ f(zP(k~). 

Taking limits again we find that 

w(t  ~, G ( z ~ ) )  >~ f ( z ~ ) ,  (45) 

This, in combination with e3-optimality of z ~, yields that 

V x ~ X :  w( t  ° ~ , G ( x ) ) + e ~ > ~ f ( x )  
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SO that gO~(. )+  e~ is feasible for D. Moreover, 

w( t p(k), 0) - e p(k)<~ ¢P (D ( X  p(k) ) ) ~ (0(D). (46) 

In the limit, (46) implies that, indeed, g~(.  )+  e~ is ( e~+  e3)-optimal for D. 
(b) As before, we consider an accumulation point and a subsequence converging 

to it. Now, 

f ( x  ~) = lim f ( x  p~k~) >~ lira sup(q~(P(X p~x))) _ e p~k~) 

>~ lim( w( tP(k), O) _ e  lp~k) _ ep2~k)) 

= (W(too, 0)-}- E 3 ) - - ( e ~ +  e~f'+ e~) 

/> ~(P) - ( e ~ +  e~+  e~), (47) 

which, combined with the primal feasibility of x ~, establishes the result; the last 
inequality follows from the dual feasibility of g~(.  )+  e~. 

(e) The proof  is as above, making use of the fact that f ( x  i"~'k) >~f(xk). 
(d) With UB k and LB k converging to, say UB °~ and LB °° respectively, and with 

converging subsequences constructed as before, (45) implies that on the one hand, 

UB~ <~ f ( ~ )  + w(t ~, O) - w(t ~, C(z~))  + ~;~<~ w(t ~, 0)+ e; ° . (48) 

On the other hand (cf. (47)), 

LB~ ~>f(x ~) ~> w( t  ~, 0) - e ~ -  e2. (49) 

Together, (48) and (49) establish the result. [] 

As in Section 3, finite convergence to an e0k-optimal solution can be assured if 
under the above conditions, e0 k exceeds k k k el + e2 + e3 by a strictly positive constant 
independent of k. Under these conditions one can also establish the equivalent of 
a well known property of Lagrangean Relaxation, in that every accumulation point 
z °o of (zk)~ is a lira sup e~-optimal solution to the program P in which the right-hand- 
side has been changed from 0 to G ( z  °°) (for details, see Flippo, 1991). 

The reader may have noticed a great deal of similarity between the two types of 
decomposition procedures introduced above; indeed, in the next section they will 
be seen to be dual to each other in a well defined sense. From that perspective, the 
absence of an analogue to the general asymptotic convergence result in Theorem 
3.4 is disturbing. On second thought however, it is perhaps not too surprising. The 
analogous construction of point-to-set maps would involve an appropriate definition 
of closedness of  point-to-set maps in infinite dimensional functional spaces, a 
definition that is not at all obvious. Indeed, the standard norms that one could 
impose on such spaces (e.g. sup{Ig(r)l} or ~ [g(r) I dr) to introduce a notion of 
convergence, all have the unpleasant side effect that the dual solutions, and hence 
the value function, should have "bounded"  or even "small tails" (i.e. sup{Ig(r)t} ~ M 
for some M >~ 0 or g ( r ) ~  0 for L[rll ~ oe). This would require strong conditions on 
the original problem P; if, for instance, the latter norm is used, then inequality 
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constraints can no longer be accounted for. Thus, one could argue that the asymmetry 
noted between the two types of decomposition methods simply reflects the funda- 
mental a symmet ry - -  finite versus infinite dimensionality - -  between the primal and 
the dual problem in the Tind-Wolsey duality framework, and that the best one can 
hope for is perfect symmetry in the case that both primal and dual are essentially 
finite dimensional. Theorems 3.5 and 4.4 accomplish precisely that. The lack of a 
point-to-set mapping framework also implies that for an asymptotic convergence 
analysis we have to rely on what actually happens during the iterative procedure. 
This might explain why Theorem 3.4 only requires the existence of finitely parametriz- 
able dual solutions, whereas the proof  of Theorem 4.4 requires their actual generation. 
From a computational point of  view this is, of  course, not at all restrictive. 

5. Duality between decomposition methods 

The above presentation of Variable and Constraint Decomposition brings out the 
striking symmetry between these procedures, in what appears to be an attractive 

didactical setting. In Variable Decomposition the master program produces relaxa- 
tions and the subprograms produce restrictions of  the given problem; in Constraint 
Decomposition it is the other way round. In Variable Decomposition the master 
program sends primal solutions to the subprograms and receives dual solutions in 
return; in Constraint Decomposition, once again, the reverse is the case. Indeed, 

as we shall see below, these two approaches can be seen as dual to each other, thus 
generalizing the relationship between Benders and Dantzig-Wolfe Decomposition 
for LP as outlined in Lasdon (1970). Our starting point will be the (regular) primal 
program 

P: m a x  
x 

s.t. 

f ( x )  (50) 

a(x)oO, (51) 

H(x)o 0, (52) 

xeX, (53) 

where f G and H are functions from X to ~ u {-oc}, ~'~1 and ~,,2 respectively, 
c {~<, =}'~ and o c { ~<, =}-,2. The additively separable dual reads (cf. Theorem 2.1) 

D: g(0) + h(0) (54) min 
g,h 

s , t .  g(G(x ) )+h(H(x ) )>~f (x )  V x c X ,  (55) 

g 6 F c ,  hcPH, (56) 

with Fc  and FH being defined appropriately (cf. Section 4). Let us first apply 
Constraint Decomposition to (50)-(53) by restricting x to a subset / 7 _ ~ H =  
{x ~ X I H(x )  o 0}. In doing so, we obtain restricted primal and relaxed dual master 
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programs P(H) and D(/I) ,  and subprograms CD(g), which are all similarly defined 
as their counterparts in Section 4 with X, X and F replaced b y / 7 , / I  and F t .  Now 
let us apply Variable Decomposition to (54)-(56). By fixing g = g we obtain 

g(0) + h(O) 

s.t. h(H(x))>~f(x)-#,(G(x)) V x e X ,  

hcF,.  

Note that, apart from ¢(0), D(¢) is in fact the dual program of CD(~) (cf. Section 
2), so provided that g(0) ~ ~, projection and dualization yields 

rain max f(x)+#,(O)-¢(G(x)) 
x 

s.t. H(x) o O, 

x c X ,  

s.t. g(O) ~ ~, gcFc .  

Introducing a dummy variable 0 yields the following equivalent formulation 

min 0 
g,,O 

s.t. O>~f(x)+#,(O)-#,(G(x)) Vxc l I ,  

#(0)~e, ¢ e F c ,  0E~. 

After a change of variables g(.  ) = g(.  ) - g (0 )  + 0 and restriction to the subset H _/7,  
we obtain a relaxed master program 

VD(H): min g(0) 
g 

s.t, g(G(x))>~f(x) Vx c fI, 

g(o)~, g~ro, 

which, provided that ~o(P(/I))>-oo, is exactly identical to D(/~)! Thus, the dual 
relationship between the two decomposition approaches has been made precise. It 
is now illuminating to think of the role of the subprogram in Variable Decomposition 
as providing information on how P is affected by fixing some of the primal decision 
variables, whereas in Constraint Decomposition the effect on P of fixing some dual 
variables is revealed; apparently, both the primal feasible set and the primal objective 
function are affected in that case. 

The dual relationship between the two approaches suggests that mixtures of the 
two ought to be feasible, and indeed they are. A particularly interesting example is 
a generalized version of Cross Decomposition (Van Roy, 1980, 1983), which applies 
whenever the primal program would allow both Variable and Constraint Decomposi- 
tion (cf. (9)-(11)). In their regular implementations, the relaxed (dual) master 
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programs would supply the input for their respective subprograms. But since the 
former are usually much harder to solve, it is tempting to iterate between the two 
types of subprograms instead. This is exactly what Cross Decomposition does. As 
before, upper and lower bounds are generated each iteration, and thus the usual 
termination criterion applies. This attractive simplification, however, comes at a 
price; non-repetition, let alone convergence, cannot be guaranteed. The intuitive 
reason for this is that the subprograms rely only on recently obtained information, 
whereas the master programs accumulate all information over time. Thus, at least 
an occasional call on a full master program is required to guarantee convergence 
for Cross Decomposition. In general, this also applies to other hybrid techniques 
such as Kornai-Liptdk Decomposition, although for specific linear programs the 
latter method is proven to converge asymptotically (cf. Kornai and Lipt~ik, 1965; 
and Holmberg, 1990; see also Dirickx and Jennergren, 1979; Aardal and Ari, 1990; 
Flippo and Rinnooy Kan, 1991; and Holmberg, 1992). 

Other decomposition techniques can also be recovered as simple variations on 
one of the two main types. For example, if one duplicates all or some variables, 
adding constraints to force equality between a variable and its duplicate, and one 
applies Constraint Decomposition with X equal to all but the latter constraints, then 
Variable Splitting (J6rnsten et al., 1985) or Lagrangean Decomposition (Guignard 
and Kim, 1987) is obtained. If in Constraint Decomposition the master program is 
replaced by a (heuristic) dual update mechanism, then one readily recognizes the 
popular technique of Lagrangean Relaxation. 

Our conclusion would be that all this confirms that the above framework is 
sufficiently general to capture a large variety of well known optimization techniques, 
and yet does not lack the analytical content necessary to derive essential formal 
properties. 
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