4,139 research outputs found

    On the Convergence Time of the Best Response Dynamics in Player-specific Congestion Games

    Full text link
    We study the convergence time of the best response dynamics in player-specific singleton congestion games. It is well known that this dynamics can cycle, although from every state a short sequence of best responses to a Nash equilibrium exists. Thus, the random best response dynamics, which selects the next player to play a best response uniformly at random, terminates in a Nash equilibrium with probability one. In this paper, we are interested in the expected number of best responses until the random best response dynamics terminates. As a first step towards this goal, we consider games in which each player can choose between only two resources. These games have a natural representation as (multi-)graphs by identifying nodes with resources and edges with players. For the class of games that can be represented as trees, we show that the best-response dynamics cannot cycle and that it terminates after O(n^2) steps where n denotes the number of resources. For the class of games represented as cycles, we show that the best response dynamics can cycle. However, we also show that the random best response dynamics terminates after O(n^2) steps in expectation. Additionally, we conjecture that in general player-specific singleton congestion games there exists no polynomial upper bound on the expected number of steps until the random best response dynamics terminates. We support our conjecture by presenting a family of games for which simulations indicate a super-polynomial convergence time

    Joint strategy fictitious play with inertia for potential games

    Get PDF
    We consider multi-player repeated games involving a large number of players with large strategy spaces and enmeshed utility structures. In these ldquolarge-scalerdquo games, players are inherently faced with limitations in both their observational and computational capabilities. Accordingly, players in large-scale games need to make their decisions using algorithms that accommodate limitations in information gathering and processing. This disqualifies some of the well known decision making models such as ldquoFictitious Playrdquo (FP), in which each player must monitor the individual actions of every other player and must optimize over a high dimensional probability space. We will show that Joint Strategy Fictitious Play (JSFP), a close variant of FP, alleviates both the informational and computational burden of FP. Furthermore, we introduce JSFP with inertia, i.e., a probabilistic reluctance to change strategies, and establish the convergence to a pure Nash equilibrium in all generalized ordinal potential games in both cases of averaged or exponentially discounted historical data. We illustrate JSFP with inertia on the specific class of congestion games, a subset of generalized ordinal potential games. In particular, we illustrate the main results on a distributed traffic routing problem and derive tolling procedures that can lead to optimized total traffic congestion

    Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure

    Full text link
    We consider structural and algorithmic questions related to the Nash dynamics of weighted congestion games. In weighted congestion games with linear latency functions, the existence of (pure Nash) equilibria is guaranteed by potential function arguments. Unfortunately, this proof of existence is inefficient and computing equilibria is such games is a {\sf PLS}-hard problem. The situation gets worse when superlinear latency functions come into play; in this case, the Nash dynamics of the game may contain cycles and equilibria may not even exist. Given these obstacles, we consider approximate equilibria as alternative solution concepts. Do such equilibria exist? And if so, can we compute them efficiently? We provide positive answers to both questions for weighted congestion games with polynomial latency functions by exploiting an "approximation" of such games by a new class of potential games that we call Ψ\Psi-games. This allows us to show that these games have d!d!-approximate equilibria, where dd is the maximum degree of the latency functions. Our main technical contribution is an efficient algorithm for computing O(1)-approximate equilibria when dd is a constant. For games with linear latency functions, the approximation guarantee is 3+52+O(γ)\frac{3+\sqrt{5}}{2}+O(\gamma) for arbitrarily small γ>0\gamma>0; for latency functions with maximum degree d2d\geq 2, it is d2d+o(d)d^{2d+o(d)}. The running time is polynomial in the number of bits in the representation of the game and 1/γ1/\gamma. As a byproduct of our techniques, we also show the following structural statement for weighted congestion games with polynomial latency functions of maximum degree d2d\geq 2: polynomially-long sequences of best-response moves from any initial state to a dO(d2)d^{O(d^2)}-approximate equilibrium exist and can be efficiently identified in such games as long as dd is constant.Comment: 31 page

    Congestion, equilibrium and learning: The minority game

    Get PDF
    The minority game is a simple congestion game in which the players' main goal is to choose among two options the one that is adopted by the smallest number of players. We characterize the set of Nash equilibria and the limiting behavior of several well-known learning processes in the minority game with an arbitrary odd number of players. Interestingly, different learning processes provide considerably different predictions

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Efficient computation of approximate pure Nash equilibria in congestion games

    Get PDF
    Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes O(1)-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes (2+ϵ)(2+\epsilon)-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and 1/ϵ1/\epsilon. It also applies to games with polynomial latency functions with constant maximum degree dd; there, the approximation guarantee is dO(d)d^{O(d)}. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium; the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing ρ\rho-approximate equilibria is {\sf PLS}-complete for any polynomial-time computable ρ\rho
    corecore