51,214 research outputs found

    Purified and Unified Steganographic Network

    Full text link
    Steganography is the art of hiding secret data into the cover media for covert communication. In recent years, more and more deep neural network (DNN)-based steganographic schemes are proposed to train steganographic networks for secret embedding and recovery, which are shown to be promising. Compared with the handcrafted steganographic tools, steganographic networks tend to be large in size. It raises concerns on how to imperceptibly and effectively transmit these networks to the sender and receiver to facilitate the covert communication. To address this issue, we propose in this paper a Purified and Unified Steganographic Network (PUSNet). It performs an ordinary machine learning task in a purified network, which could be triggered into steganographic networks for secret embedding or recovery using different keys. We formulate the construction of the PUSNet into a sparse weight filling problem to flexibly switch between the purified and steganographic networks. We further instantiate our PUSNet as an image denoising network with two steganographic networks concealed for secret image embedding and recovery. Comprehensive experiments demonstrate that our PUSNet achieves good performance on secret image embedding, secret image recovery, and image denoising in a single architecture. It is also shown to be capable of imperceptibly carrying the steganographic networks in a purified network. Code is available at \url{https://github.com/albblgb/PUSNet}Comment: 8 pages, 9 figures, Accepted at CVPR202

    Covert Quantum Internet

    Full text link
    We apply covert quantum communication based on entanglement generated from the Minkowski vacuum to the setting of quantum computation and quantum networks. Our approach hides the generation and distribution of entanglement in quantum networks by taking advantage of relativistic quantum effects. We devise a suite of covert quantum teleportation protocols that utilize the shared entanglement, local operations, and covert classical communication to transfer or process quantum information in stealth. As an application of our covert suite, we construct two prominent examples of measurement-based quantum computation, namely the teleportation-based quantum computer and the one-way quantum computer. In the latter case we explore the covert generation of graph states, and subsequently outline a protocol for the covert implementation of universal blind quantum computation.Comment: 9 pages, 2 figure

    Covert repertoires: ecotage in the UK

    Get PDF
    Ecological sabotage (ecotage) has been a feature of the more radical parts of the environmental movement in the Western world for several decades. While it may be perceived as being the preserve of underground cells of 'eco-terrorists', in the UK those who carry out small-scale acts of sabotage are also often engaged in relatively conventional political activity; view sabotage as a complement to other action, not as an end in itself; and are committed to avoiding physical harm to people. Drawing on ethnographic data from research with British activists, this article seeks to define ecotage and to explain its place in the repertoires of the environmental direct action movement in the UK. It is argued that the self-limiting form of ecotage in the UK has its roots in cross-movement debates that have developed over several decades and that national traditions remain important in understanding the development of social movement repertoires

    Towards Provably Invisible Network Flow Fingerprints

    Full text link
    Network traffic analysis reveals important information even when messages are encrypted. We consider active traffic analysis via flow fingerprinting by invisibly embedding information into packet timings of flows. In particular, assume Alice wishes to embed fingerprints into flows of a set of network input links, whose packet timings are modeled by Poisson processes, without being detected by a watchful adversary Willie. Bob, who receives the set of fingerprinted flows after they pass through the network modeled as a collection of independent and parallel M/M/1M/M/1 queues, wishes to extract Alice's embedded fingerprints to infer the connection between input and output links of the network. We consider two scenarios: 1) Alice embeds fingerprints in all of the flows; 2) Alice embeds fingerprints in each flow independently with probability pp. Assuming that the flow rates are equal, we calculate the maximum number of flows in which Alice can invisibly embed fingerprints while having those fingerprints successfully decoded by Bob. Then, we extend the construction and analysis to the case where flow rates are distinct, and discuss the extension of the network model
    • …
    corecore