Network traffic analysis reveals important information even when messages are
encrypted. We consider active traffic analysis via flow fingerprinting by
invisibly embedding information into packet timings of flows. In particular,
assume Alice wishes to embed fingerprints into flows of a set of network input
links, whose packet timings are modeled by Poisson processes, without being
detected by a watchful adversary Willie. Bob, who receives the set of
fingerprinted flows after they pass through the network modeled as a collection
of independent and parallel M/M/1 queues, wishes to extract Alice's embedded
fingerprints to infer the connection between input and output links of the
network. We consider two scenarios: 1) Alice embeds fingerprints in all of the
flows; 2) Alice embeds fingerprints in each flow independently with probability
p. Assuming that the flow rates are equal, we calculate the maximum number of
flows in which Alice can invisibly embed fingerprints while having those
fingerprints successfully decoded by Bob. Then, we extend the construction and
analysis to the case where flow rates are distinct, and discuss the extension
of the network model