1,419 research outputs found

    Phase Space Invertible Asynchronous Cellular Automata

    Full text link
    While for synchronous deterministic cellular automata there is an accepted definition of reversibility, the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and then investigate what we call phase space invertible asynchronous cellular automata in more detail. We will show that for each Turing machine there is such a cellular automaton simulating it, and that it is decidable whether an asynchronous cellular automaton has this property or not, even in higher dimensions.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Adaptive Complex Contagions and Threshold Dynamical Systems

    Full text link
    A broad range of nonlinear processes over networks are governed by threshold dynamics. So far, existing mathematical theory characterizing the behavior of such systems has largely been concerned with the case where the thresholds are static. In this paper we extend current theory of finite dynamical systems to cover dynamic thresholds. Three classes of parallel and sequential dynamic threshold systems are introduced and analyzed. Our main result, which is a complete characterization of their attractor structures, show that sequential systems may only have fixed points as limit sets whereas parallel systems may only have period orbits of size at most two as limit sets. The attractor states are characterized for general graphs and enumerated in the special case of paths and cycle graphs; a computational algorithm is outlined for determining the number of fixed points over a tree. We expect our results to be relevant for modeling a broad class of biological, behavioral and socio-technical systems where adaptive behavior is central.Comment: Submitted for publicatio

    Combining Boolean Networks and Ordinary Differential Equations for Analysis and Comparison of Gene Regulatory Networks

    Get PDF
    This thesis is concerned with different groups of qualitative models of gene regulatory networks. Four types of models will be considered: interaction graphs, Boolean networks, models based on differential equations and discrete abstractions of differential equations. We will investigate the relations between these modeling frameworks and how they can be used in the analysis of individual models. The focus lies on the mathematical analysis of these models. This thesis makes several contributions in relating these different modeling frameworks. The first approach concerns individual Boolean models and parametrized families of ordinary differential equations (ODEs). To construct ODE models systematically from Boolean models several automatic conversion algorithms have been proposed. In Chapter 2 several such closely related algorithms will be considered. It will be proven that certain invariant sets are preserved during the conversion from a Boolean network to a model based on ODEs. In the second approach the idea of abstracting the dynamics of individual models to relate structure and dynamics will be introduced. This approach will be applied to Boolean models and models based on differential equations. This allows to compare groups of models in these modeling frameworks which have the same structure. We demonstrate that this constitutes an approach to link the interaction graph to the dynamics of certain sets of Boolean networks and models based on differential equations. The abstracted dynamics – or more precisely the restrictions on the abstracted behavior – of such sets of Boolean networks or models based on differential equations will be represented as Boolean state transitions graphs themselves. We will show that these state transition graphs can be considered as asynchronous Boolean networks. Despite the rather theoretical question this thesis tries to answer there are many potential applications of the results. The results in Chapter 2 can be applied to network reduction of ODE models based on Hill kinetics. The results of the second approach in Chapter 4 can be applied to network inference and analysis of Boolean model sets. Furthermore, in the last chapter of this thesis several ideas for applications with respect to experiment design will be considered. This leads to the question how different asynchronous Boolean networks or different behaviours of a single asynchronous Boolean network can be distinguishedDiese Arbeit beschäftigt sich mit unterschiedlichen Typen von qualitativen Modellen genregulatorischer Netzwerke. Vier Typen von Modellen werden betrachtet: Interaktionsgraphen, Boolesche Netzwerke, Modelle, die auf Differentialgleichungen basieren und diskrete Abstraktionen von Differentialgleichungen. Wir werden mehr über die Beziehungen zwischen diesen Modellgruppen lernen und wie diese Beziehungen genutzt werden können, um einzelne Modelle zu analysieren. Der Schwerpunkt liegt hierbei auf der mathematischen Analyse dieser Modellgruppen. In dieser Hinsicht leistet diese Arbeit mehrere Beiträge. Zunächst betrachten wir Boolesche Netzwerke und parametrisierte Familien von gewöhnlichen Differentialgleichungen (ODEs). Um solche ODE-Modelle systematisch aus Booleschen Modellen abzuleiten, wurden in der Vergangenheit verschiedene automatische Konvertierungsalgorithmen vorgeschlagen. In Kapitel 2 werden einige dieser Algorithmen näher untersucht. Wir werden beweisen, dass bestimmte invariante Mengen bei der Konvertierung eines Booleschen Modells in ein ODE-Modell erhalten bleiben. Der zweite Ansatz, der in dieser Arbeit verfolgt wird, beschäftigt sich mit diskreten Abstraktionen der Dynamik von Modellen. Mit Hilfe dieser Abstraktionen ist es möglich, die Struktur – den Interaktionsgraphen – und die Dynamik der zugehörigen Modelle in Bezug zu setzen. Diese Methode wird sowohl auf Boolesche Modelle als auch auf ODE-Modelle angewandt. Gleichzeitig erlaubt dieser Ansatz Mengen von Modellen in unterschiedlichen Modellgruppen zu vergleichen, die dieselbe Struktur haben. Die abstrahierten Dynamiken (genauer die Einschränkungen der abstrahierten Dynamiken) der Booleschen Modellmengen oder ODE-Modellmengen können als Boolesche Zustandsübergangsgraphen repräsentiert werden. Wir werden zeigen, dass diese Zustandsübergangsgraphen wiederum selber als (asynchrone) Boolesche Netzwerke aufgefasst werden können. Trotz der theoretischen Ausgangsfrage werden in dieser Arbeit zahlreiche Anwendungen aufgezeigt. Die Ergebnisse aus Kapitel 2 können zur Modellreduktion benutzt werden, indem die Dynamik der ODE-Modelle auf den zu den Booleschen Netzwerken gehörigen “trap spaces” betrachtet wird. Die Resultate aus Kapitel 4 können zur Netzwerkinferenz oder zur Analyse von Modellmengen genutzt werden. Weiterhin werden im letzten Kapitel dieser Arbeit einige Anwendungsideen im Bezug auf Experimentdesign eingeführt. Dies führt zu der Fragestellung, wie verschiedene asynchrone Boolesche Netzwerke oder unterschiedliche Dynamiken, die mit einem einzelnen Modell vereinbar sind, unterschieden werden können

    Asynchronous Networks and Event Driven Dynamics

    Get PDF
    Real-world networks in technology, engineering and biology often exhibit dynamics that cannot be adequately reproduced using network models given by smooth dynamical systems and a fixed network topology. Asynchronous networks give a theoretical and conceptual framework for the study of network dynamics where nodes can evolve independently of one another, be constrained, stop, and later restart, and where the interaction between different components of the network may depend on time, state, and stochastic effects. This framework is sufficiently general to encompass a wide range of applications ranging from engineering to neuroscience. Typically, dynamics is piecewise smooth and there are relationships with Filippov systems. In the first part of the paper, we give examples of asynchronous networks, and describe the basic formalism and structure. In the second part, we make the notion of a functional asynchronous network rigorous, discuss the phenomenon of dynamical locks, and present a foundational result on the spatiotemporal factorization of the dynamics for a large class of functional asynchronous networks

    Causal graph dynamics

    Full text link
    We extend the theory of Cellular Automata to arbitrary, time-varying graphs. In other words we formalize, and prove theorems about, the intuitive idea of a labelled graph which evolves in time - but under the natural constraint that information can only ever be transmitted at a bounded speed, with respect to the distance given by the graph. The notion of translation-invariance is also generalized. The definition we provide for these "causal graph dynamics" is simple and axiomatic. The theorems we provide also show that it is robust. For instance, causal graph dynamics are stable under composition and under restriction to radius one. In the finite case some fundamental facts of Cellular Automata theory carry through: causal graph dynamics admit a characterization as continuous functions, and they are stable under inversion. The provided examples suggest a wide range of applications of this mathematical object, from complex systems science to theoretical physics. KEYWORDS: Dynamical networks, Boolean networks, Generative networks automata, Cayley cellular automata, Graph Automata, Graph rewriting automata, Parallel graph transformations, Amalgamated graph transformations, Time-varying graphs, Regge calculus, Local, No-signalling.Comment: 25 pages, 9 figures, LaTeX, v2: Minor presentation improvements, v3: Typos corrected, figure adde
    • …
    corecore