389 research outputs found

    Complexity of Propositional Proofs under a Promise

    Get PDF
    We study -- within the framework of propositional proof complexity -- the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where ``many'' stands for an explicitly specified function \Lam in the number of variables nn. To this end, we develop propositional proof systems under different measures of promises (that is, different \Lam) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: 1. Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is \eps\cd2^n, for any constant 0<\eps<1. 2. There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn2^{\delta n} (and the number of clauses is o(n3/2)o(n^{3/2})), for any constant 0<δ<10<\delta<1.Comment: 32 pages; a preliminary version appeared in the Proceedings of ICALP'0

    Tight Size-Degree Bounds for Sums-of-Squares Proofs

    Full text link
    We exhibit families of 44-CNF formulas over nn variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) dd but require SOS proofs of size nΩ(d)n^{\Omega(d)} for values of d=d(n)d = d(n) from constant all the way up to nδn^{\delta} for some universal constantδ\delta. This shows that the nO(d)n^{O(d)} running time obtained by using the Lasserre semidefinite programming relaxations to find degree-dd SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP\mathsf{NP}-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Kraj\'i\v{c}ek '04] and [Dantchev and Riis'03], and then applying a restriction argument as in [Atserias, M\"uller, and Oliva '13] and [Atserias, Lauria, and Nordstr\"om '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively

    Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances

    Full text link
    This paper first analyzes the resolution complexity of two random CSP models (i.e. Model RB/RD) for which we can establish the existence of phase transitions and identify the threshold points exactly. By encoding CSPs into CNF formulas, it is proved that almost all instances of Model RB/RD have no tree-like resolution proofs of less than exponential size. Thus, we not only introduce new families of CNF formulas hard for resolution, which is a central task of Proof-Complexity theory, but also propose models with both many hard instances and exact phase transitions. Then, the implications of such models are addressed. It is shown both theoretically and experimentally that an application of Model RB/RD might be in the generation of hard satisfiable instances, which is not only of practical importance but also related to some open problems in cryptography such as generating one-way functions. Subsequently, a further theoretical support for the generation method is shown by establishing exponential lower bounds on the complexity of solving random satisfiable and forced satisfiable instances of RB/RD near the threshold. Finally, conclusions are presented, as well as a detailed comparison of Model RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively, exhibit three different kinds of phase transition behavior in NP-complete problems.Comment: 19 pages, corrected mistakes in Theorems 5 and

    Complexity of Propositional Proofs Under a Promise

    Get PDF
    Abstract. We study – within the framework of propositional proof complexity – the problem of certifying unsatisfiability of CNF formulas under the promise that any satisfiable formula has many satisfying assignments, where “many ” stands for an explicitly specified function Λ in the number of variables n. To this end, we develop propositional proof systems under different measures of promises (that is, different Λ) as extensions of resolution. This is done by augmenting resolution with axioms that, roughly, can eliminate sets of truth assignments defined by Boolean circuits. We then investigate the complexity of such systems, obtaining an exponential separation in the average-case between resolution under different size promises: (1) Resolution has polynomial-size refutations for all unsatisfiable 3CNF formulas when the promise is ε·2n, for any constant 0 &lt; ε &lt; 1. (2) There are no sub-exponential size resolution refutations for random 3CNF formulas, when the promise is 2δn (and the number of clauses is o(n3/2)), for any constan

    Parameterized complexity of DPLL search procedures

    Get PDF
    We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game which models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n steps for a non-trivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked in [11] of understanding the Resolution complexity of this family of formulas

    Scale-Free Random SAT Instances

    Full text link
    We focus on the random generation of SAT instances that have properties similar to real-world instances. It is known that many industrial instances, even with a great number of variables, can be solved by a clever solver in a reasonable amount of time. This is not possible, in general, with classical randomly generated instances. We provide a different generation model of SAT instances, called \emph{scale-free random SAT instances}. It is based on the use of a non-uniform probability distribution P(i)iβP(i)\sim i^{-\beta} to select variable ii, where β\beta is a parameter of the model. This results into formulas where the number of occurrences kk of variables follows a power-law distribution P(k)kδP(k)\sim k^{-\delta} where δ=1+1/β\delta = 1 + 1/\beta. This property has been observed in most real-world SAT instances. For β=0\beta=0, our model extends classical random SAT instances. We prove the existence of a SAT-UNSAT phase transition phenomenon for scale-free random 2-SAT instances with β<1/2\beta<1/2 when the clause/variable ratio is m/n=12β(1β)2m/n=\frac{1-2\beta}{(1-\beta)^2}. We also prove that scale-free random k-SAT instances are unsatisfiable with high probability when the number of clauses exceeds ω(n(1β)k)\omega(n^{(1-\beta)k}). %This implies that the SAT/UNSAT phase transition phenomena vanishes when β>11/k\beta>1-1/k, and formulas are unsatisfiable due to a small core of clauses. The proof of this result suggests that, when β>11/k\beta>1-1/k, the unsatisfiability of most formulas may be due to small cores of clauses. Finally, we show how this model will allow us to generate random instances similar to industrial instances, of interest for testing purposes
    corecore