6,182 research outputs found

    The Light Lexicographic path Ordering

    Full text link
    We introduce syntactic restrictions of the lexicographic path ordering to obtain the Light Lexicographic Path Ordering. We show that the light lexicographic path ordering leads to a characterisation of the functions computable in space bounded by a polynomial in the size of the inputs

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    On Quasi-Interpretations, Blind Abstractions and Implicit Complexity

    Full text link
    Quasi-interpretations are a technique to guarantee complexity bounds on first-order functional programs: with termination orderings they give in particular a sufficient condition for a program to be executable in polynomial time, called here the P-criterion. We study properties of the programs satisfying the P-criterion, in order to better understand its intensional expressive power. Given a program on binary lists, its blind abstraction is the nondeterministic program obtained by replacing lists by their lengths (natural numbers). A program is blindly polynomial if its blind abstraction terminates in polynomial time. We show that all programs satisfying a variant of the P-criterion are in fact blindly polynomial. Then we give two extensions of the P-criterion: one by relaxing the termination ordering condition, and the other one (the bounded value property) giving a necessary and sufficient condition for a program to be polynomial time executable, with memoisation.Comment: 18 page

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    Observation of implicit complexity by non confluence

    Get PDF
    We propose to consider non confluence with respect to implicit complexity. We come back to some well known classes of first-order functional program, for which we have a characterization of their intentional properties, namely the class of cons-free programs, the class of programs with an interpretation, and the class of programs with a quasi-interpretation together with a termination proof by the product path ordering. They all correspond to PTIME. We prove that adding non confluence to the rules leads to respectively PTIME, NPTIME and PSPACE. Our thesis is that the separation of the classes is actually a witness of the intentional properties of the initial classes of programs
    • …
    corecore