27 research outputs found

    Dynamic automatic differentiation of GPU broadcast kernels

    Get PDF
    We show how forward-mode automatic differentiation (AD) can be employed within larger reverse-mode computations to dynamically differentiate broadcast operations in a GPU-friendly manner. Our technique fully exploits the broadcast Jacobian's inherent sparsity structure, and unlike a pure reverse-mode approach, this "mixed-mode" approach does not require a backwards pass over the broadcasted operation's subgraph, obviating the need for several reverse-mode-specific programmability restrictions on user-authored broadcast operations. Most notably, this approach allows broadcast fusion in primal code despite the presence of data-dependent control flow. We discuss an experiment in which a Julia implementation of our technique outperformed pure reverse-mode TensorFlow and Julia implementations for differentiating through broadcast operations within an HM-LSTM cell update calculation

    Polyèdres et Compilation

    No full text
    22 pagesInternational audienceLa première utilisation de polyèdres pour résoudre un problème de compilation, la parallélisation automatique de boucles en présence d'appels de procédure, a été décrite et implémenté il y a près de trente ans. Le modèle polyédrique est maintenant reconnu internationalement et est en phase d'intégration dans le compilateur GCC, bien que la complexité exponentielle des algorithmes associés ait été pendant très longtemps un motif justifiant leur refus pur et simple. L'objectif de cet article est de donner de nombreux exemples d'utilisation des polyèdres dans un compilateur optimiseur et de montrer qu'ils permettent de poser des conditions simples pour garantir la légalité de transformations

    Selective Vectorization for Short-Vector Instructions

    Get PDF
    Multimedia extensions are nearly ubiquitous in today's general-purpose processors. These extensions consist primarily of a set of short-vector instructions that apply the same opcode to a vector of operands. Vector instructions introduce a data-parallel component to processors that exploit instruction-level parallelism, and present an opportunity for increased performance. In fact, ignoring a processor's vector opcodes can leave a significant portion of the available resources unused. In order for software developers to find short-vector instructions generally useful, however, the compiler must target these extensions with complete transparency and consistent performance. This paper describes selective vectorization, a technique for balancing computation across a processor's scalar and vector units. Current approaches for targeting short-vector instructions directly adopt vectorizing technology first developed for supercomputers. Traditional vectorization, however, can lead to a performance degradation since it fails to account for a processor's scalar resources. We formulate selective vectorization in the context of software pipelining. Our approach creates software pipelines with shorter initiation intervals, and therefore, higher performance. A key aspect of selective vectorization is its ability to manage transfer of operands between vector and scalar instructions. Even when operand transfer is expensive, our technique is sufficiently sophisticated to achieve significant performance gains. We evaluate selective vectorization on a set of SPEC FP benchmarks. On a realistic VLIW processor model, the approach achieves whole-program speedups of up to 1.35x over existing approaches. For individual loops, it provides speedups of up to 1.75x

    Large-scale Classical Simulation of Quantum Systems Using the Trotter-Suzuki Decomposition

    Get PDF
    Many theoretical studies and experimental results rely on the use of numerical analysis for the solution of the Schrödinger equation. Indeed, for nontrivial quantum systems, a complete solution of the dynamics is difficult to achieve analytically. We extended the implementation of a highly optimized solver to simulate the evolution of a wave function on a 2D lattice. We also implemented the imaginary time evolution to approximate the ground state. The dynamics of the system is now described by a Hamiltonian that includes an external potential and a contact interaction term. The algorithm is based on the second-order Trotter-Suzuki approximation and it is implemented on CPU and GPU kernels that run efficiently on a cluster. We proved the accuracy of the code solving the Gross-Pitaevskii equation for a Bose-Einstein condensate and reproducing the experimental results, obtained at NIST, of the soliton dynamics in a cloud of sodium atoms. The code is available under an open source license, and it is exposed as an application program interface and a command-line interface. The code is also accessible in Python and MATLAB. Future development of the code include the extension to a 3D lattice, whereas the actual implementation can already find applications in ultracold atom physics

    Optimisation des mémoires dans le flot de conception des systèmes multiprocesseurs sur puces pour des applications de type multimédia

    Get PDF
    RÉSUMÉ Les systèmes multiprocesseurs sur puce (MPSoC) constituent l'un des principaux moteurs de la révolution industrielle des semi-conducteurs. Les MPSoCs jouissent d’une popularité grandissante dans le domaine des systèmes embarqués. Leur grande capacité de parallélisation à un très haut niveau d'intégration, en font de bons candidats pour les systèmes et les applications telles que les applications multimédia. La consommation d’énergie, la capacité de calcul et l’espace de conception sont les éléments dont dépendent les performances de ce type d’applications. La mémoire est le facteur clé permettant d’améliorer de façon substantielle leurs performances. Avec l’arrivée des applications multimédias embarquées dans l’industrie, le problème des gains de performances est vital. La masse de données traitées par ces applications requiert une grande capacité de calcul et de mémoire. Dernièrement, de nouveaux modèles de programmation ont fait leur apparition. Ces modèles offrent une programmation de plus haut niveau pour répondre aux besoins croissants des MPSoCs, d’où la nécessité de nouvelles approches d'optimisation et de placement pour les systèmes embarqués et leurs modèles de programmation. La conception niveau système des architectures MPSoCs pour les applications de type multimédia constitue un véritable défi technique. L’objectif général de cette thèse est de relever ce défi en trouvant des solutions. Plus spécifiquement, cette thèse se propose d’introduire le concept d’optimisation mémoire dans le flot de conception niveau système et d’observer leur impact sur différents modèles de programmation utilisés lors de la conception de MPSoCs. Il s’agit, autrement dit, de réaliser l’unification du domaine de la compilation avec celui de la conception niveau système pour une meilleure conception globale. La contribution de cette thèse est de proposer de nouvelles approches pour les techniques d'optimisation mémoire pour la conception MPSoCs avec différents modèles de programmation. Nos travaux de recherche concernent l'intégration des techniques d’optimisation mémoire dans le flot de conception de MPSoCs pour différents types de modèle de programmation. Ces travaux ont été exécutés en collaboration avec STMicroelectronics.----------ABSTRACT Multiprocessor systems-on-chip (MPSoC) are defined as one of the main drivers of the industrial semiconductors revolution. MPSoCs are gaining popularity in the field of embedded systems. Pursuant to their great ability to parallelize at a very high integration level, they are good candidates for systems and applications such as multimedia. Memory is becoming a key player for significant improvements in these applications (i.e. power, performance and area). With the emergence of more embedded multimedia applications in the industry, this issue becomes increasingly vital. The large amount of data manipulated by these applications requires high-capacity calculation and memory. Lately, new programming models have been introduced. These programming models offer a higher programming level to answer the increasing needs of MPSoCs. This leads to the need of new optimization and mapping approaches suitable for embedded systems and their programming models. The overall objective of this research is to find solutions to the challenges of system level design of applications such as multimedia. This entails the development of new approaches and new optimization techniques. The specific objective of this research is to introduce the concept of memory optimization in the system level conception flow and study its impact on different programming models used for MPSoCs’ design. In other words, it is the unification of the compilation and system level design domains. The contribution of this research is to propose new approaches for memory optimization techniques for MPSoCs’ design in different programming models. This thesis relates to the integration of memory optimization to varying programming model types in the MPSoCs conception flow. Our research was done in collaboration with STMicroelectronics
    corecore