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Abstract

We show how forward-mode automatic differentiation (AD) can be employed
within larger reverse-mode computations to dynamically differentiate broadcast
operations in a GPU-friendly manner. Our technique fully exploits the broadcast
Jacobian’s inherent sparsity structure, and unlike a pure reverse-mode approach,
this “mixed-mode” approach does not require a backwards pass over the broad-
casted operation’s subgraph, obviating the need for several reverse-mode-specific
programmability restrictions on user-authored broadcast operations. Most notably,
this approach allows broadcast fusion in primal code despite the presence of data-
dependent control flow. We discuss an experiment in which a Julia implementation
of our technique outperformed pure reverse-mode TensorFlow and Julia implemen-
tations for differentiating through broadcast operations within an HM-LSTM cell
update calculation.

1 Introduction

In recent years, the prevalence of gradient-based optimization in machine learning (ML) has motivated
an upsurge in the development of ML-specific modeling languages that incorporate automatic
differentiation (AD) as a fundamental feature. However, contemporary ML research routinely seeks
to utilize new modeling and optimization techniques that push these frameworks’ AD capabilities
to - and past - their limit. Both practical and exploratory implementations of such techniques
demand advanced features such as nested differentiation, differentiation through data-dependent
control flow, domain-specific hardware specialization, distributed parallelism, checkpointing, and
more [20, 8, 18, 19, 3, 27, 2].

In the pursuit of solutions capable of incorporating such features, it has become clear that modeling
languages’ expressiveness must necessarily be constrained for the sake of differentiability. Recent
endeavors [40, 7, 12, 11, 31, 22, 36, 32] that explore this tradeoff have been strongly guided by
well-established methods from programming language (PL) research, provoking the evolution of a
new research area known as differentiable programming. This is quite a natural development, as the
narrative of traditional AD research has always been richly intertwined with PL and mathematical
programming research.

Particularly relevant in this regard is the work of Siskind and Pearlmutter, whose stated vision aligns
surprisingly well with the goals of contemporary differentiable programming research: “Our vision:
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...a unified intermediate language that supports both compiler optimizations and AD transformations
for a variety of source and target languages.” [33] When viewed through the lens of [23], it can be
concluded that “optimal” differentiation of such a language cannot be achieved via pure forward- or
reverse-mode approaches, but rather demands a mixed-mode approach. Achieving optimality, in this
case, is often defined as minimizing the number of multiply-adds required to differentiate a given
program via selecting the optimal mode for each subregion, and is known as the Optimal Jacobian
Accumulation (OJA) problem. This problem has been shown to be NP-complete [24].

Despite this general theoretical intractability, mixed-mode AD offers a host of other advantages
that can still be leveraged in practice by heuristically exploiting the local structure of the target
language’s primitive operations. This paper’s primary concern is the application of this idea to a
very common scientific computing primitive: the broadcast operation [37]. In §2, we present the
broadcast operation and a reverse-mode-interleavable forward-mode method for its differentiation
that exploits the special sparsity structure of its total Jacobian. In §3, we discuss an experiment that
demonstrates our method’s superiority over pure reverse-mode approaches for the differentiation
of a data-dependent HM-LSTM cell update calculation on the GPU. Via this paper, we wish to
motivate the development of a new generation of differentiating compilers that do not operate
purely in the forward or reverse modes, but rather choose the optimal mode for each target
subprogram when such a choice is naively determinable from local structure.

2 Methodology

2.1 Broadcast Operations

2.1.1 Broadcast Notation/Terminology

Throughout this paper, we will append a period to a function to denote broadcasting that function
over its arguments. We define the broadcast of a function b : RN → RM as:

b.(X1 . . .XN ) = broadcast(b,X1 . . .XN ) = map(b,X1 . . .XN ) = Y1 . . .YM

Here, the Xj arguments are multidimensional arrays of arbitrary shape 2, subject to the constraint
that each dimension of any argument must either have the same length as that dimension in other
arguments, or must have length 1. Each Xj is equivalent to the corresponding Xj , but where length-1
dimensions are “copied” along that dimension to match its maximum length across all Xj , such that
all Xj are of equal shape. The function b is then mapped elementwise across all Xj , resulting in the
outputs Yi, each of which is the same shape as any Xj .3

For example, broadcasting b : R3 → R2 over an n ×m matrix A, a scalar α, and an n-element
vector a yields:

b.(A, α,a) =


b(A11, α, a1)1 . . . b(A1m, α, a1)1

...
. . .

...
b(An1, α, an)1 . . . b(Anm, α, an)1

 ,
b(A11, α, a1)2 . . . b(A1m, α, a1)2

...
. . .

...
b(An1, α, an)2 . . . b(Anm, α, an)2




(1)

To denote broadcast for binary infix operators, we prepend (instead of append) the period, e.g.
f.(X1) .+ g.(X2) = +.(f.(X1), g.(X2)).

2.1.2 Fusing Compositions of Broadcast Operations

Assuming that a pair of broadcasted operations have compatible shapes and are relatively side-effect
free, the broadcast of their composition generally obeys the following relation:

g.(f.(X1 . . .XN )) = (g ◦ f).(X1 . . .XN ) (2)

2Note that scalars and single-element arrays are equivalent under this definition of broadcast.
3Shrewd broadcast implementations index directly into the Xj arguments to perform b elementwise invoca-

tions (as is done in Eq. (1)) rather than explicitly materialize the Xj arguments.
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In programs containing broadcast operations, Eq. (2) can be exploited to perform broadcast fusion, a
compiler-level optimization that transforms compositions of broadcast calls into a single broadcast call.
This optimization imparts a couple of performance benefits. First, by obviating the need to compute
and store intermediate results, broadcast fusion reduces memory usage, temporary allocations, and
kernel invocations required to complete the computation. Second, broadcast fusion allows the fused
broadcast operation to be parallelized without re-synchronization between intermediary broadcast
operations [10, 17].

2.2 Automatic Differentiation of Broadcast Operations

2.2.1 Multidimensional Dual Numbers

A common way to formulate forward-mode AD is via the algebra of dual numbers. Dual numbers
are similar to complex numbers, but instead of appending the imaginary unit i to R, the dual number
algebra appends the infinitesimal perturbation ε where ε2 = 0, ε 6= 0 to R. Via Taylor series
expansion, one can show that unary function application on dual numbers is defined as:

f(x+ yε) = f(x) + f ′(x)yε where x, y ∈ R (3)

This formulation is commonly implemented by defining a library of mathematical primitives that act
on a Dual type consisting of the (x, y) pair, e.g. cos(Dual(x, y))→ Dual(cos(x), -sin(x)
* y). This Dual type can then be used to automatically differentiate any program composed of the
defined primitives.

While this formulation is usually straightforward to implement, it is also quite limited - only a single
scalar derivative can be calculated per call of the target function. To overcome this limitation, we
can use an extended formulation of the dual numbers known as the multidimensional dual numbers,
which are defined as:

x+
∑k

i=1
yiεi where εiεj = 0, s.t. (4)

f

(
x+

∑k

i=1
yiεi

)
= f(x) + f ′(x)

∑k

i=1
yiεi (5)

Multidimensional dual numbers allow for a “vector forward-mode” implementation of gradient
calculation, where orthogonal ε components are appended to orthogonal input components to compute
their individual directional derivatives [28, 30]:

x =


x1
...
xi
...
xk

→ xε =


x1 + ε1

...
xi + εi

...
xk + εk

→ f(xε) = f(x) +

k∑
i=1

∂f(x)

∂xi
εi (6)

To extract the ε components as a tuple from a multidimensional dual number, we utilize the tangent
extraction function tg, defined as

tgα(x+

k∑
i=1

yiα[εi]) = (y1 . . . yk) (7)

Note that tg utilizes the notion of tagged perturbations; tgα only extracts perturbations that are
marked with the “tag” α, represented here via the bracket syntax α[ε]. This tagging machinery
is necessary (but unfortunately not sufficient) to avoid a class of AD bugs known as perturbation
confusion [35, 34, 21].

2.2.2 Sparse Forward-Mode Jacobians of Broadcasted Operations

Broadcasted operations generally take the form b : RN → RM where N is the input arity and M
is the output arity. While b might be broadcasted over millions of input elements, the arities N and
M are generally relatively small (often < 10). To automatically differentiate such a function in the
forward-mode, we can define a Jacobian operator D using multidimensional dual numbers:

D(b) = (x1 . . . xN ) 7→ tgα.(b(x1 + α[ε1], x2 + α[ε2], . . . xN + α[εN ])) (8)

3



Table 1: Example Reverse-Mode Computation

Definition Forward (Primal) Reverse (Adjoint)

h(x,y) = g(f(x,y)) w2 = 1 (seed)

f(x,y) = b.(x,y) w1 = f(x,y) w1 = w2
∂w2

∂w1

b : R2 → R w2 = g(w1)
∂h
∂x = w1 · ∂f∂x

g : RN → R ∂h
∂y = w1 .× ∂fi

∂yi

x ∈ R, y ∈ RN

where tgα is the tangent extraction function defined in Eq. (7). Note that we are broadcasting tgα
over the output tuple of b in order to extract all components of the Jacobian. For example, for
b : R3 → R2, the definition expands to the following:

D(b) = (x1, x2, x3) 7→ tgα.(b(x1 + α[ε1], x2 + α[ε2], x3 + α[ε3]))

= (x1, x2, x3) 7→

(
tgα(y1 +

∂y1
∂x1

α[ε1] +
∂y1
∂x2

α[ε2] +
∂y1
∂x3

α[ε3])

tgα(y2 +
∂y2
∂x1

α[ε1] +
∂y2
∂x2

α[ε2] +
∂y2
∂x3

α[ε3])

)

= (x1, x2, x3) 7→

(
∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

)
The following observation is frequently utilized throughout the rest of the paper:

Given b : RN → RM s.t.
b.(X1 . . .XN ) = map(b,X1 . . .XN ) = (Y1 . . .YM ), then

D(b).(X1 . . .XN )→
{
diag

(
∂(vec(Yi))

∂(vec(Xj))

)
| i ∈ 1 . . .M, j ∈ 1 . . . N

}
(9)

where vec is notation for vectorization (i.e. “flattening” the given tensor to a vector), and diag is
notation for extracting the diagonal of a square matrix. In other words, Eq. (9) directly computes all
elementwise partial derivatives of the total Jacobian of b.(X1 . . .XN ). This approach exploits the
sparsity structure imposed on the Jacobian by the broadcast operation, avoiding calculation of the
zero-valued cross-element partial derivatives (the off-diagonal elements of the ∂(vec(Yi))

∂(vec(Xj))
matrices)

by construction. Note, however, that if b entails side-effects that induce cross-element dependence,
then the total Jacobian is not fully recovered by this method, since the uncalculated cross-element
partial derivatives may be nonzero in this case.

2.2.3 Employing Forward-Mode Within Reverse-Mode

Eq. (9) has significant performance and programmability implications when exploited within larger
reverse-mode AD computations, since it enables the differentiation of fully-fused broadcast subgraphs
without requiring the construction of a backwards pass. Specifically, Eq. (9) can be employed to
easily calculate and cache the intermediate Jacobian of the broadcast subgraph during the forward
pass of the overall reverse-mode computation. This Jacobian can then be backpropagated during the
reverse pass instead of backpropagating through the broadcast subgraph directly. In this way, Eq. (9)
allows one to treat entire broadcast subgraphs as fused forward-mode primitives, obviating the need
for reversible representations of these subgraphs.

To illustrate the use of Eq. (9) within a reverse-mode computation, consider the example defined in
Table 1. The left column defines the target function h, the center column expresses the primal forward
pass of the computation, and the right column expresses the adjoint pass used to compute ∂h

∂x and
∂h
∂y . In the adjoint pass, the actual calculation of w1 can be accomplished via the usual reverse-mode
approach of decomposing g(w1) into a reversible subgraph built from known primitive operations.
The calculation of ∂f

∂x and ∂fi
∂yi

, however, can be accomplished via Eq. (9) without requiring the
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construction of reverse-mode computation subgraph at all:(
∂f

∂x
,
∂fi
∂yi

)
= D(b).(x,y) (10)

Note that while it is mathematically useful to discuss D(b).(x,y) and b.(x,y) as separate computa-
tions as we have done here, practical AD implementations leveraging this method can exploit the
implicit computation of b.(x,y) that occurs as part of computing D(b).(x,y). Instead of applying
the tgα operator immediately as is done in Eq. (8), the primal and dual computation results can be
extracted simultaneously. In other words, the w1 step in forward pass code can be replaced with a
step that simultaneously calculates w1, ∂f∂x , and ∂fi

∂yi
by simply invoking f with dual number inputs.

Fusing the primal and derivative calculations in this manner avoids redundant computation, but
requires that the resulting partial derivatives be cached until they are backpropagated in the reverse
pass. This fusion, then, may not be desirable if there is not sufficient memory available to sustain such
a cache. Conversely, computing D(b).(x,y) during the reverse pass redundantly computes b.(x,y),
but the resulting partial derivatives can be backpropagated immediately, and thus their storage can be
freed (or reused) immediately. Ultimately, the choice of whether D should be applied in the forward
pass or in the reverse pass depends on the memory/compute bandwidth of the overall computation.

2.2.4 Forward-Mode vs. Reverse-Mode For D(b)

The previous sections implemented D as a forward-mode differentiation operator, but D could have
also been implemented via reverse-mode AD without invalidating Eq. (9). Why, then, is forward-
mode the better choice for this use case? The answer to this question can be summarized in three
points:

1: IfN > M , then reverse-mode is algorithmically superior to forward-mode. However, b is generally
low-arity, and in practice, forward-mode often outperforms reverse-mode for low-arity functions
regardless of the N/M ratio. There are two reasons for this. First, reverse-mode implementations
often incur relatively high constant costs that are not amortized in the low-arity regime. Second,
forward-mode’s additional chain rule applications can be offset for low-arity functions by leveraging
stack allocation schemes that make better use of cache bandwidth and allow for the exploitation of
instruction-level parallelism [30].

2: If the target function contains data-dependent control flow, reverse-mode implementations must
dynamically allocate the data-dependent regions of the computation graph4. For low-arity functions,
the overhead of dynamic trace allocation can easily dwarf the cost of the target function’s primal
evaluation. For broadcasted operations, this high overhead would be incurred for every elementwise
invocation, rendering the reverse-mode approach in this case wholly unsuitable for the GPU where
excessive dynamic allocation is infeasible.

3: Following from the previous point, using forward-mode for broadcast differentiation allows
data-dependent control flow to occur within broadcasted scalar operations, thus avoiding several
disadvantages inherent to vectorized control flow primitives currently employed by reverse-mode
frameworks (e.g. TensorFlow’s where [2]). The first disadvantage is programmability; vectorized
control flow primitives are often more cumbersome to use than their naive scalar counterparts. The
second disadvantage is that many vectorized control flow primitives require computing untaken
branches. While these primitives do have the benefit of clearly avoiding warp divergence on the
GPU, the experiment described in §3 demonstrates that this benefit does not necessarily offset the
cost of computing untaken branches on newer GPU architectures - especially if the difference in cost
between branches is substantial - since newer architectures support executing different instructions
across a warp without forcing serialized execution.

4This requirement is not implementation-specific, but rather a hard theoretical limit; capturing intermediate
values which depend on run time data will always require run time allocation in the general case, though certain
optimizations may alleviate this burden in special cases. This requirement applies even to reverse-mode tools
that claim to be “tapeless” by statically generating backwards pass code [38, 22], or performing equivalent
transformation via language-level constructs such as delimited continuations or closures [39]. As Pearlmutter
and Siskind remark, it is “impossible” to “eliminate the tape from reverse-mode AD” because “the tape stores
intermediate values computed during the forward phase that are needed during the reverse phase.” [29]
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3 Performance Experiments

In this section, we describe an experiment performed to compare this paper’s forward-mode broadcast
differentiation technique with existing reverse-mode approaches. Our test case for this experiment
was a cell update calculation that occurs during the execution of a hierarchical multiscale LSTM
(HM-LSTM) [9], described in §3.1. In §3.2, we describe the three different AD implementations
used to calculate gradients for our test case (TensorFlow-based reverse-mode, Julia-based reverse-
mode, and Julia-based forward-mode). Finally, in §3.4, we analyze GPU performance measurements
obtained from benchmarking these implementations.

Note that all implementation, benchmark, and test code is publicly available in its entirety at [1].

3.1 HM-LSTM Cell Update

The HM-LSTM cell update calculation is a real-world example of a broadcast operation that is
amenable to differentiation via Eq. (9). For a given time step t and layer `, the update calculation for
the cell c`t is:

c`t =


σ.(f `t ) .× c`t−1 .+ σ.(i`t) .× tanh .(g`t) if z`t−1 = 0, z`−1t = 1 (UPDATE)
c`t−1 if z`t−1 = 0, z`−1t = 0 (COPY)
σ.(i`t) .× tanh .(g`t) if z`−1t = 1 (FLUSH)

(11)

where f and i are memory gates, g is a cell proposal vector, and z is a boundary state.

We chose this operation as our experimental test case because it is self-contained, hinges on data-
dependent control flow, has a substantial computational cost difference between branches, and is
relevant to a machine learning audience.

The benchmarks described in the following sections are primarily concerned with the calculation of
∂c`

t

∂c`
t−1

, ∂c
`
t

∂f`t
, ∂c

`
t

∂i`t
, and ∂c`

t

∂g`
t
.

3.2 Tested AD Implementations

3.2.1 Reverse-Mode TensorFlow Implementation

The first implementation tested in our experiment was a TensorFlow-based implementation derived
from [26]. This implementation makes use of TensorFlow’s vectorized control flow primitive where,
which eagerly computes both branches of the conditional statement before returning the branch
specified by the given predicate. This primitive sidesteps actual branching and thus avoids two
potential pitfalls discussed in §2.2.4: dynamic trace allocation and warp divergence. As discussed in
that section, avoiding these two perceived pitfalls comes at the cost of restricting the programming
model and limiting opportunities for optimizations such as broadcast fusion.

A visualization of the implementation’s post-optimization intermediate representation (IR) can be
found in [1], depicted as a computation graph in the High Level Optimizer (HLO) format. From
this graph, it can be seen that TensorFlow’s XLA compiler broke up the entire computation into six
separate kernels, each representing a partially fused region of the forward and reverse passes, including
broadcasted select operations that were generated from the initial code’s where invocations.

3.2.2 Reverse-Mode Julia Implementation

The second implementation tested in our experiment was a reverse-mode implementation in the Julia
language [5]. This implementation was directly derived from the HLO graph of the TensorFlow
implementation described in the previous section. The intent was to exactly mirror TensorFlow’s
operations at the abstraction level of its HLO representation in order to better bridge comparisons
between the reverse-mode TensorFlow and forward-mode Julia implementations. To accomplish this,
the HLO graph operations were manually transcribed as native Julia code, additionally using the
CUDAnative package to enable execution on the GPU [4].
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3.2.3 Forward-Mode Julia Implementation

The third implementation tested in our experiment was a native Julia implementation of forward-mode
broadcast differentiation as described by Eq. (9). Like the reverse-mode Julia implementation, this
implementation also employed the CUDAnative package to enable execution on the GPU. In many
other ways, however, this forward-mode implementation differs substantially from the reverse-mode
implementations.

The principle difference was the manner in which the primal calculation was expressed. While the
reverse-mode implementations expressed control flow via vectorized primitives, the forward-mode
approach allows the fusion of control flow into the broadcasted kernel without incurring the reverse-
mode-specific performance penalties discussed in §2.2.4. Thus, the forward-mode implementation’s
primal calculation was derived by using the relation from Eq. (2) to fuse Eq. (11) into a single
broadcastable kernel:

update(c, f, i, g, z1, z2) =


σ(f)× c+ σ(i)× tanh(g) if z1 = 0, z2 = 1 (UPDATE)
c if z1 = 0, z2 = 0 (COPY)
σ(i)× tanh(g) if z2 = 1 (FLUSH)

(12)

c`t = update.(c`t−1, f
`
t , i

`
t,g

`
t , z

`
t−1, z

`−1
t ) (13)

An implementation of the D operator (defined by Eq. (8)) was then applied to Eq. (12) to calculate
the required gradients. The D operator itself was implemented using the multidimensional dual
number type provided by the ForwardDiff package, which represents a dual number as a pure Julia
struct with two fields; one for the primal scalar, and one for a stack-allocated vector of perturbation
coefficients [30].

3.3 Experimental Setup

Python code was executed using Python 3.6.3 with TensorFlow 1.5.0 and its XLA JIT compiler
(which includes an unreleased version of LLVM close to LLVM 6.0). Julia code was executed using
Julia 0.7.0-DEV.5025, built on LLVM 6.0. All required versions of all Julia packages used are publicly
available: CUDAnative.jl version 0.8.1, CUDAdrv.jl 0.8.3, LLVM.jl 0.9.8, and ForwardDiff 0.7.5.
We used the CUDA toolkit at version 9.1.85, in combination with NVIDIA driver 390.30 and Linux
4.13 from Ubuntu 17.10.

The implementations described in §3.2 were tested on NVIDIA Tesla V100, Tesla P100, and GTX
1080Ti GPUs in combination with 2 hexa-core Intel Xeon E5-2603 v4 CPUs and 64 GiB of DDR4
memory.

We measure the performance of individual implementations using the NVIDIA profiling tools from
the CUDA toolkit. We only report kernel timings, excluding, e.g., memory transfers and CUDA API
interactions, because the different implementations were designed to behave identically from an API
point of view.

For the sake of accurate comparison, our Julia-based benchmarks followed TensorFlow’s configuration
where possible, e.g., using page-locked memory allocated asynchronously using the driver API,
performing an identical amount of memory transfers, launch kernels identically (using at most 64
threads and a corresponding number of blocks), etc.

3.4 Experiment Results and Analysis

Fig. 1 shows the execution times to compute the aforementioned derivatives for each implementation
described in §3.2 across three generations of NVIDIA GPUs, with c`t−1, f `t , i`t , and g`t taking n× n
random 32-bit floating point matrix values and z`t−1 and z`−1t taking n-element random 32-bit
floating point vector values where n ∈ {512, 1024, 2048}. As can be seen in Fig. 1, the forward-
mode Julia implementation features a speedup of 4.28x, 2.66x, and 2.60x over the reverse-mode
Julia implementation on the Volta, Pascal, and Kepler architectures, respectively. Compared to the
reverse-mode TensorFlow implementation, these speedups are 4.18x, 1.53x and 1.07x, respectively.

As mentioned in §2.2.4, a substantial advantage of the forward-mode approach is that it avoids the
computation of untaken branches by allowing data-dependent control flow to be fused within the
broadcasted operation itself. However, this kind of fine-grained branching has traditionally been

7
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Figure 2: Forward-mode execution time with random control inputs vs. warp-uniform control inputs.

considered unfavorable for GPUs, which typically require threads within a so-called “warp” (a group
of typically 32 threads) to execute in lockstep. If threads within a warp branch to different instructions,
the hardware must execute both branches on all threads within the warp and mask out the results of
untaken branches on each thread. This is known as warp divergence, and can decrease performance
significantly [6].

Fortunately, recent hardware improvements found on NVIDIA’s Volta architecture can drastically
mitigate the negative impact of warp divergence in many cases. This architecture enables independent
thread scheduling by maintaining a program counter and call stack for every thread separately [25],
thus allowing threads to execute different instructions without requiring serialized execution. The
effects of this architectural improvement can be seen in Fig. 2, which shows the ratio of the forward-
mode Julia implementation’s execution time between uniformly distributed random control inputs and
warp-uniform control inputs. Executing on a Tesla V100 GPU, the overhead of the thread-divergent
implementation in terms of kernel execution time drops from 40% to 30% on Kepler and Pascal.
When looking at total application execution time, this cost is even lower (below 1%), as kernels also
execute faster on more recent hardware.

3.4.1 Utilization Scaling With Increased Broadcast Arity

In addition to the main experiment, a different experiment was performed to explore how various
indicators of GPU utilization scale as the arity of a forward-mode-differentiated broadcast operation
increases.

As previously stated, the ForwardDiff package’s multidimensional dual number implementation
utilizes a stack-allocated vector to store perturbation coefficients. Recalling §2.2.1, the length of
every input, output, and intermediate dual number’s perturbation vector is equal to the input arity of
the target operation. Thus, increasing the input arity of the target operation increases register pressure.
On CPUs, increased register usage can quickly result in excessive stack pressure, such that temporary
values must be spilled into memory. On GPUs, however, many more registers are available; for
example, the Tesla V100 contains 65,536 32-bit registers on each of its 84 Shared Multiprocessors
(SM) [25]. This advantage is offset by the large number of threads executing concurrently on the
GPU, since each thread reserves a number of registers for exclusive use. The balance between active
thread count and register usage is captured by the occupancy metric, precisely defined as the ratio of
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Figure 3: Effects of increasing operation arity on various utilization metrics on a Tesla V100 GPU.

active warps on an SM to the maximum number of active warps supported by the SM. With increased
register usage, fewer warps can be allocated on each SM, and occupancy drops.

To assess the impact of a broadcasted operation’s input arity on the performance of its forward-mode
differentiation by dual numbers, we designed an artificial benchmark and measured its achieved
occupancy and effective hardware utilization: the computation of D(f).(x1 . . .xN ) where

f(x1 . . . xN ) =
∏
i

tanh(g(xi))

g(x) =

{
x if x > 1

2

−x otherwise
and each xj is a 1024× 1024 random matrix with 32-bit floating point elements. This benchmark
provides a balanced workload for which it is easy to increase the arity N and measure the subsequent
effect on hardware utilization. Fig. 3 shows how occupancy drops steadily from 5 arguments on,
at which point the amount of registers exceeds 32 and insufficient warps can be launched to satisfy
the maximum number of concurrent warps per SM. Hardware utilization is initially limited by the
low complexity of the kernel. It does not drop as strongly as the occupancy, since higher arity also
increases the workload of the kernel, but at 18 arguments both compute and bandwidth utilization
drop below 60% and the kernel can be considered latency-bound due to low occupancy.

4 Conclusion

In this paper, we presented a reverse-mode-interleavable forward-mode method for the differentiation
of broadcast that outperforms pure reverse-mode methods on the GPU and simultaneously obvi-
ates the need for reverse-mode-specific programmability restrictions on user-authored broadcasted
operations. This mixed-mode technique is, in fact, already well-utilized in the Julia ecosystem. It
was first introduced in 2016 by the ReverseDiff package (developed by this paper’s first author) [16],
whose original implementation of the method has since propagated to the Flux and Zygote packages
[13, 22].

In the future, higher-order mixed-mode AD is likely to present interesting new challenges in the vein
of perturbation/sensitivity confusion. For example, consider the forward-mode differentiation of the
broadcast of a function that closes over variables naively tracked by a surrounding reverse-mode
implementation. More research is needed to identify these potentially problematic scenarios and
explore their ramifications.

Additional work has been planned to implement first-class mixed-mode AD for Julia within the
upcoming Capstan package [14], which will build on recently developed tools enabling third-party
packages to extend Julia’s compiler with new, context-specific behaviors by dynamically injecting
code transformation passes into Julia’s just-in-time (JIT) compilation cycle [15].
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