6,960 research outputs found

    On dynamic threshold graphs and related classes

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We design an efficient algorithm to find the minimum separator, and we show how to maintain minimum its value when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we study the disjoint union and the join of two threshold graphs, showing that the resulting graphs are threshold signed graphs, i.e. a superclass of both threshold and difference graphs. Finally, we consider the complement operation on all the three introduced classes of graphs. All these operations produce in output the modified graph in terms of their separator and require time linear w.r.t. the number of different degrees. We observe that recomputing from scratch the separator would run either in linear (for threshold and difference graphs) or quadratic (for threshold signed graphs) time w.r.t. the number of nodes of the graph

    Learning Loosely Connected Markov Random Fields

    Full text link
    We consider the structure learning problem for graphical models that we call loosely connected Markov random fields, in which the number of short paths between any pair of nodes is small, and present a new conditional independence test based algorithm for learning the underlying graph structure. The novel maximization step in our algorithm ensures that the true edges are detected correctly even when there are short cycles in the graph. The number of samples required by our algorithm is C*log p, where p is the size of the graph and the constant C depends on the parameters of the model. We show that several previously studied models are examples of loosely connected Markov random fields, and our algorithm achieves the same or lower computational complexity than the previously designed algorithms for individual cases. We also get new results for more general graphical models, in particular, our algorithm learns general Ising models on the Erdos-Renyi random graph G(p, c/p) correctly with running time O(np^5).Comment: 45 pages, minor revisio

    Understanding the Complexity of Lifted Inference and Asymmetric Weighted Model Counting

    Full text link
    In this paper we study lifted inference for the Weighted First-Order Model Counting problem (WFOMC), which counts the assignments that satisfy a given sentence in first-order logic (FOL); it has applications in Statistical Relational Learning (SRL) and Probabilistic Databases (PDB). We present several results. First, we describe a lifted inference algorithm that generalizes prior approaches in SRL and PDB. Second, we provide a novel dichotomy result for a non-trivial fragment of FO CNF sentences, showing that for each sentence the WFOMC problem is either in PTIME or #P-hard in the size of the input domain; we prove that, in the first case our algorithm solves the WFOMC problem in PTIME, and in the second case it fails. Third, we present several properties of the algorithm. Finally, we discuss limitations of lifted inference for symmetric probabilistic databases (where the weights of ground literals depend only on the relation name, and not on the constants of the domain), and prove the impossibility of a dichotomy result for the complexity of probabilistic inference for the entire language FOL

    Dynamically mantaining minimal integral separator for Threshold and Difference Graphs

    Get PDF
    This paper deals with the well known classes of threshold and difference graphs, both characterized by separators, i.e. node weight functions and thresholds. We show how to maintain minimum the value of the separator when the input (threshold or difference) graph is fully dynamic, i.e. edges/nodes are inserted/removed. Moreover, exploiting the data structure used for maintaining the minimality of the separator, we handle the operations of disjoint union and join of two threshold graphs. © Springer International Publishing Switzerland 2016

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266

    Advanced nickel-hydrogen cell configuration study

    Get PDF
    Three nickel hydrogen battery designs, individual pressure vessel (IPV), common pressure vessel (CPV), and a bipolar battery module were studied. Weight, system complexity and cost were compared for a satellite operating in a 6 hour, 5600 nautical mile orbit. The required energy storage is 52 kWh. A 25% improvement in specific energy is observed by employing a bipolar battery versus a battery comprised of hundreds of IPV's. Further weight benefits are realized by the development of light weight technologies in the bipolar design
    • …
    corecore