592 research outputs found

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    The computational complexity of the Chow form

    Full text link
    We present a bounded probability algorithm for the computation of the Chow forms of the equidimensional components of an algebraic variety. Its complexity is polynomial in the length and in the geometric degree of the input equation system defining the variety. In particular, it provides an alternative algorithm for the equidimensional decomposition of a variety. As an application we obtain an algorithm for the computation of a subclass of sparse resultants, whose complexity is polynomial in the dimension and the volume of the input set of exponents. As a further application, we derive an algorithm for the computation of the (unique) solution of a generic over-determined equation system.Comment: 60 pages, Latex2

    Character Sums and Deterministic Polynomial Root Finding in Finite Fields

    Full text link
    We obtain a new bound of certain double multiplicative character sums. We use this bound together with some other previously obtained results to obtain new algorithms for finding roots of polynomials modulo a prime pp

    GPGCD: An iterative method for calculating approximate GCD of univariate polynomials

    Full text link
    We present an iterative algorithm for calculating approximate greatest common divisor (GCD) of univariate polynomials with the real or the complex coefficients. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. The problem of approximate GCD is transfered to a constrained minimization problem, then solved with the so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. We demonstrate that, in some test cases, our algorithm calculates approximate GCD with perturbations as small as those calculated by a method based on the structured total least norm (STLN) method and the UVGCD method, while our method runs significantly faster than theirs by approximately up to 30 or 10 times, respectively, compared with their implementation. We also show that our algorithm properly handles some ill-conditioned polynomials which have a GCD with small or large leading coefficient.Comment: Preliminary versions have been presented as doi:10.1145/1576702.1576750 and arXiv:1007.183

    Generalized companion matrix for approximate GCD

    Full text link
    We study a variant of the univariate approximate GCD problem, where the coefficients of one polynomial f(x)are known exactly, whereas the coefficients of the second polynomial g(x)may be perturbed. Our approach relies on the properties of the matrix which describes the operator of multiplication by gin the quotient ring C[x]=(f). In particular, the structure of the null space of the multiplication matrix contains all the essential information about GCD(f; g). Moreover, the multiplication matrix exhibits a displacement structure that allows us to design a fast algorithm for approximate GCD computation with quadratic complexity w.r.t. polynomial degrees.Comment: Submitted to MEGA 201

    An elementary proof of Barnett's theorem about the greatest common divisor of several univarlate polynomials

    Get PDF
    AbstractThis articule provides a new proof of Barnett's theorem giving the degree of the greatest common divisor of several univariate polynomials with coefficients in a field in terms of the rank of a well-defined matrix. The new proof is elementary and self-contained (no use of Jordan form or invariant factors), and it is based on some easy to state properties of subresultants. Moreover this proof allows one to generalize Barnett's results to the case when the considered polynomials have their coefficients in an integral domain
    corecore